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Abstract — While blockchain enables decentralized services 
with zero trust, every node needs to store continuously 
generating block information in their local storage. Because 
blocks are generating continuously in blockchain, there exists a 
significant storage space burden on each node. A typical 
technique is to introduce a special node customized for block 
archiving. In case of Ethereum, a special node called block 
archive node to store all historical blocks. With the help of block 
archive node, each full node is enough to maintain only latest 
128 blocks. In this paper, we propose BSS, an efficient block 
storage system for block archive service in blockchains, which 
can support any blockchain including Ethereum. BSS is a 
distributed system consisting of some number of block archive 
nodes. The storage overhead of BSS is O(1). The main idea is to 
encode each block into several small chunks and enforce each 
archive node to store one chunk, not an entire block. BSS also 
supports Byzantine tolerant chunk storage protocol for possible 
Byzantine attacks by block archive nodes. It is shown from the 
experiments on AWS, BSS enables both substantial block 
availability and notable performance even in Byzantine attacks.  
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I. INTRODUCTION 
Blockchain is a decentralized and distributed ledger 

technology that records transactions in a secure and 
immutable manner. Each new transaction is added to a 
block, which is then linked to the previous block, 
creating a chain of blocks. Storage overhead in 
blockchain refers to the additional data and resources 
required to maintain and store the blockchain's data 
beyond the actual transaction information. While 
blockchain enables decentralized services with zero 
trust, every node needs to store continously generating 
block information. Thus, given a nodes in a blockchain, 
the storage overhead is O(n). (n: the number of 
blockchain nodes). Storage overhead refers to the size 
of block data accumulated in blockchain nodes, and on 
a general blockchain, storage overhead increases 
linearly as the number of nodes increases. 

For an example, Assuming that the size of each 
generated block is 1MiB, the number of tx included in 
one block is 1000, and transaction data occurs annually 
(24 hours / day * 365 days / year). Assume that 
Hyperledger Fabric is used to process transaction data 
for VISA, which processes large amounts of 
payment/payment transaction data. In the case of VISA, 
140,839M txs were processed annually in 2020 [1], and 
when converted into TPS units, approximately 4500 
TPS comes out. Accordingly, the blockchain node 
storage size per 4500 TPS is calculated at about 135.338 

TiB per year, and it can be confirmed that the 
blockchain node storage size increases by about 676 
TiB over 5 years. It can be confirmed that this is a large 
number when considering the storage capacity for 
actual data. 

Efforts have been undertaken to mitigate the storage 
overhead associated with blockchains. Selective 
blockchain transaction pruning [2] and implementations 
such as Nano [3] and introduce pruning mechanisms, 
permitting nodes to discard outdated transaction data 
that is no longer necessary for validation purposes. This 
approach aids in diminishing storage prerequisites 
while upholding network security and integrity. 
Sharding, as demonstrated by methods like Elastico [4], 
Omniledger [5], and RapidChain [6], involves 
segmenting the blockchain into smaller sections or 
shards, each managed by distinct nodes. This division 
aids in distributing the storage load across nodes, 
subsequently enhancing scalability. Slimchain [7] and 
distributed off-chain storage of medical data [8] adopt 
off-chain or layer-2 solutions, to relocate specific 
transactions or data away from the primary blockchain, 
thereby alleviating storage and processing pressures on 
the core chain. The well-known Ethereum blockchain 
[10] employs a specialized node known as the block 
archive node, responsible for storing all historical 
blocks. Consequently, each full node is solely required 
to maintain the most recent 128 blocks.  

The recent study in [9] proposed a general and robust 
block storage system based on a large-scale storage 
subsystem such as cloud storage. However, the service 
architecture of [9] has two main issues to be addressed.  
First, its block availability is limited due to its 
dependency on a large-scale storage subsystem such as 
cloud storage Second, its writing performance is 
constrained due to the application of the BFT consensus 
mechanism. Contemporary blockchains like Aptos [11] 
and Sui [12] exhibit remarkable performance, 
surpassing 100K TPS (transactions per second). So, it is 
imperative to enhance the write performance of a block 
archive service architecture. 

In this paper, we propose BSS, an efficient block 
storage system for block archive service in Blockchains. 
BSS is characterized with high performance and low 
overhead of block storage.   BSS consists of certain 
number of block archive nodes. The main idea is to 
encode each block into several small chunks and 
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enforce each archive node to store one chunk, not an 
entire block. BSS also supports Byzantine tolerant 
chunk storage protocol for possible Byzantine attacks 
by block archive nodes. 

We make the following contributions: 

• We propose BSS that guarantees block 
availability through S-node set. BSS does not 
depend on any particular storage service. 

• To our understanding, we introduce the 
capability to audit block availability using the S-
node set for the first time. 

• By applying block encoding and byzantine 
reliable broadcast to the storage network, we 
support notable performance even in byzantine 
attacks. 

• BSS supports Byzantine tolerant chunk storage 
protocol for possible Byzantine attacks by block 
archive nodes to achieve O(1) block storage 
overhead. 

We make the assumption that malicious S-nodes are 
susceptible to Byzantine node failures. However, we 
also stipulate that these malicious S-nodes are unable to 
compromise cryptographic techniques. Within our 
framework, the communication model among S-nodes 
is based on the partially synchronous network. 

II. BSS: AN EFFICIENT BLOCK STORAGE SYSTEM 
FOR BLOCK ARCHIVE SERVICE IN BLOCKCHAINS 
BSS refers to a storage service that proceeds with 

consensus and storage of block data independently of 
the blockchain network. BSS takes a distinct approach 
by exclusively utilizing a storage network, devoid of 
any reliance on external cloud storage. 

 
Fig. 1. The overall architecture of BSS. BSS undertakes dual roles. The first 

involves conducting audits to ensure block availability, achieved 
through regular auditing and reorganization processes. The second 
facet pertains to its capacity for byzantine-tolerant writing, enabling 
block writing while upholding block availability within the storage 
network, even in the presence of a byzantine S-node. This assurance of 
block availability is established by means of chunk exchanges 
facilitated by byzantine reliable broadcasting among S-nodes.  

A. System Architecture 
Within the framework of BSS, a fundamental 

element comprises a storage network comprising S-
nodes. Through the conveyance of blocks across this 
storage network and the preservation of block metadata, 
it becomes achievable to establish the accessibility of 
these blocks. When employing BSS, this capability 
might materialize as a blockchain archive node tasked 
with upholding the entirety of block data, or 
alternatively, as a blockchain full node. The BSS client 
interacts with the BSS system through the utilization of 
three core APIs. 

The first API facilitates the propagation of blocks. A 
block is dispatched to the storage network via the 
corresponding API. Upon delivery, the block undergoes 
erasure coding through a block encoder positioned 
within the storage network. Following this encoding, the 
block is disseminated throughout the storage network. 
Notably, the applied encoding follows the scheme (N, 
N-2f), enabling the reconstruction of a chunk even if 
solely N-2f fragments are available among the divided 
parts. This resilience stems from the necessity for N-f 
votes during the subsequent consensus phase to verify 
the availability of a specific block. Consequently, even 
if a maximum of f byzantine nodes exhibit malicious 
behavior during the recovery process, the block can be 
restored without complications. Subsequently, S-nodes 
on the storage network validate the assurance of block 
availability and store pertinent block metadata as 
corroborative evidence within individual local DAG 
structures. 

The second aspect involves chunk sampling. The 
BSS client triggers the audit BA API on the storage 
network to assess the accessibility of the block it has 
conveyed. By referring to the block metadata established 
on the basis of the received block, the storage network 
verifies the availability of the requested block. 

Lastly, there is the concept of block re-encoding. 
Instances might arise where BSS clients lose blocks or 
surpass the legally stipulated retention period. To 
address block recovery under such circumstances, the 
BSS client employs the block re-encoding API to 
interact with the storage network. Subsequently, the 
storage network supplies the BSS client with a block 
chunk corresponding to the designated block height. 
This provision is made possible by referencing the block 
metadata stored by each S-node (Fig. 2). 
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Fig. 2. An illustration of how BSS operates for a given block with height h 

B. Chunk Sampling 
Chunk sampling entails the process of segmenting 

blocks into chunks equivalent to the count of S-nodes 
within the storage network, subsequently dispersing and 
archiving them across the storage network. This 
technique facilitates the distribution and storage of 
chunks associated with blocks on the storage network, 
thereby enabling the audit of block availability. 

The process commences when the BSS client 
initiates an audit inquiry regarding block availability 
within the storage network. Via the relevant request, the 
BSS client transmits the block associated with a 
particular height to the storage network. Subsequently, 
the conveyed block undergoes encoding through the 
block encoder module positioned within the storage 
network. During this encoding phase, the block is 
partitioned into N chunks using a (N, N-2f) chunking 
methodology. To validate the coherence between 
chunks and their respective blocks, the block encoder 
module constructs a merkle tree utilizing chunks as 
terminal nodes. 

The generated block chunk, accompanied by 
pertinent chunk-related metadata, is dispatched to the S-
nodes. This information encompasses the chunk's 
associated S-node ID, block height, merkle root, merkle 
path for the chunk, and the sender's signature. To 
guarantee the comprehensive propagation of each block 
chunk to its designated S-node, a dependable 
background process of chunk reliable broadcasting is 
executed. 

Based on the broadcast block chunk, each S-node 
issues a block proposal based on the chunk in charge of 
each S-node to confirm that the block has been 
sufficiently propagated on the storage network. In the 
case of a block proposal, it includes the block hash in 
addition to the existing chunk information, and the 
certificates for the block proposal of the previous height. 

When each S-node receives a block proposal from a 
specific S-node, it confirms that it has a chunk for the 
block and casts a vote for the proposal. In the case of 
Vote, the vote includes the chunk for the block, S-node 
id, block height, merkle path for the chunk you have, 
merkle root, block hash, and signature. 

From the standpoint of each S-node, if n-f or more 
block votes for a specific block proposal are gathered, a 
block certificate is generated, and the DAG node 
composed of the block proposal and block certificate is 
stored in its local storage. Each S-node has block 
metadata as evidence proving that the block has been 
sufficiently distributed to the storage network. When 
metadata is available from more than n-f distinct nodes 
for a specific-height block, it ensures the distribution of 
over n-f chunks for that particular block throughout the 
storage network. Consequently, if n-f or a higher 
number of metadata instances are present for the block 
at the corresponding height, the commitment of the 
block pertaining to that specific height is confirmed.  

In response to the request sent by the BSS client for 
block availability audit the other day, the S-node 
transmits metadata of the corresponding height to the 
BSS client. After the block metadata is finally created 
at the S-node level, the block data is removed because 
the block information is no longer needed.     

Fig. 3. Chunk Sampling. Dashed line-box denotes for missing block. The 
availability auditor verifies whether there exist over n-f metadata 
entries for the block at that specific height. 

C. Block Re-encoding 
Block re-encoding refers to the method of encoding 

N-divided block chunks back into the initial complete 
block structure. This technique involves soliciting block 
retrieval from Chain for blocks absent in the possession 
of the BSS client, followed by the re-encoding of the 
primary block using the block chunks distributed 
throughout the storage network. 

Block Re-encoding serves as a method applicable 
when an ample quantity of block chunks (exceeding n-
f) has been distributed across the storage network via 
chunk sampling. In scenarios where the distribution of 
more than n-f chunks has not yet taken place within the 
storage network, a response indicating that chunk 
sampling remains underway is conveyed back to the 
BSS client. In alignment with the chunk sampling 
procedure mentioned earlier, given the capacity of 
sincere S-nodes to assure the propagation of each chunk 
through reliable broadcasting across the storage 
network, the assurance of block re-encoding is 
ultimately established. 

Assume that each S-node guarantees the availability 
of a block requested for recovery through block 
metadata. Then, each S-node can re-generate a block for 
that height based on n-f or more metadata for that block. 
The S-node completes the operation of block re-
encoding by sending the re-generated block back to the 
BSS client. 
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Fig. 4. Block Re-encoding. Block encoder/decoder recovers the missing 
blocks from the BSS client. 

III. SECURITY ANALYSIS 
For BSS, the following set of five security properties 

are upheld to fulfill the prerequisites set by established 
storage systems. 

Theorem 1. (Validity) If more than n-f S-nodes 
agreed on a specific block, the specific S-node 
submitted a block proposal corresponding to the block. 

Proof. As described above, the signature of sender is 
included in the block proposal. The meaning that more 
than n-f S-nodes agree on a specific block means that in 
the case of the block, all honest S-nodes verify the 
signature in the block proposal and vote for the block 
proposal. 

Theorem 2. (Agreement) If one honest S-node 
finally commits a block of a certain height, and another 
honest S-node also commits a block of that height, the 
block is the same. 

Proof. Each S-node votes after verifying that it 
contains a valid merkle root. Consider dividing the case 
into two commit conditions for the block. (1) If you have 
at least one certificate in the current round, certificates 
from different S-nodes in the same round all point to the 
same block. If it points to another block, each S-node 
does not vote. (2) Let r' be the round in which a 
certificate for at least one block proposal is obtained in 
the future round, when a certificate for at least one block 
proposal is obtained. n-f certificates of r'-1 belonging to 
r' certificate are fixed.  

That is, the n-f certificates of r'-1 are the certificates 
of the previous round agreed upon by n-f or more S-
nodes. In the same way, the certificates of r'-2, r'-3..., r 
mean that the block of each round has been agreed upon 
by all honest S-nodes. Eventually, the same block is 
committed for all previous rounds. 

Theorem 3. (Termination) Always each block has 
the same consensus outcome. 

Proof. We assume partially synchronous network. 
That is, messages exchanged between S-nodes and S-
nodes arrive sometime after the global stabilization time 
(GST). Chunks for blocks must reach each S-node after 
GST, and all n-f honest S-nodes generate block 

proposals based on the received chunks. Since block 
proposals generated from each S-node reach all honest 
S-nodes, votes for the corresponding block proposal are 
guaranteed to be received from all honest S-nodes. Since 
the result of consensus on a block is determined by 
whether or not a certificate for the block is received, the 
result of consensus on each block must be derived at 
some point.   

Theorem 4. (Availability) If the BSS client calls the 
block re-encoding API, the S-node can finally 
reconstruct the block Bh. 

Proof. Committing the block Bh means that the 
certificate for the block proposals Bhi' corresponding to 
the corresponding block exists. That is, it means that 
more than n-f chunks for block Bh are distributed to the 
storage network. Even if up to f chunks of a malicious 
S-node are lost after voting, since the EC(n, n-2f) 
encoding scheme is applied, even if only n-f-f = n-2f 
chunks are collected, block Bh can be reconstructed. 

Theorem 5. (Integrity) All honest S-node Si returns 
the same block Bh for block re-encoding request invoked 
by BSS client. 

Proof. In a situation where the height is fixed, all 
blocks of a specific height that are committed are the 
same. That is, with respect to the committed block Bh, 
block Bh can be reconstructed through chunks of S-
nodes corresponding to votes included in block 
proposals Bhi'. 

IV. EVALUATION 

A. Experimental Setup  
We performed a performance assessment using the 

AWS cloud [13] to address three primary research 
questions. (1) Does it deliver elevated throughput and 
minimal latency in typical scenarios devoid of 
Byzantine S-nodes? (2) Does it exhibit reduced storage 
overhead in contrast to scenarios where chunk 
sampling is omitted? (3) Does BSS maintain 
satisfactory throughput and latency levels even within 
a common setting involving Byzantine S-nodes? 

For the AWS cloud instance type, the AWS cloud 
instance type for the BSS client and all S-nodes is 
fixed as m5d.xlarge (# of vCPUs: 4, RAM 16GiB, 
SSD: 1 x 150GB NVMe, Network Bandwidth: 
10Gbps) proceeded. Deployment regions were divided 
into four regions: Seoul (ap-northeast-2), N.Virginia 
(us-east-1), N.California (us-west-1), and Sydney (ap-
northeast-2). There is one BSS client, and the number 
of S-nodes has changed from 4 to 16. For the 
experimental workload, the tx size was 2,822 bytes, 
which was set according to the average hyperledger 
fabric average tx size, and the batch size was measured 
as 100. 

We undertook a comprehensive comparative 
examination of three distinct systems. The primary 
reference system is the sui blockchain [12]. The 
second system encompasses BSS without the 
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incorporation of chunk sampling. In scenarios where 
chunk sampling is absent, entire blocks are exchanged 
directly between S-nodes. Contrasting the sui 
blockchain, this particular system deploys a linearized 
2-phase consensus process to create a DAG node for a 
block suggested by a leader node. Subsequent to the 
commitment of the corresponding DAG node, a 
conclusive sequence is established for this DAG node 
concerning the corresponding DAG node linked to the 
block proposed by the previously endorsed leader 
node. Our ultimate emphasis in this performance 
evaluation centers around the BSS system integrated 
with chunk sampling. 
B. Experiment 

 
 

Fig. 5. BSS throughput vs. latency (S-nodes and BSS client are in Seoul. 
The number of S-nodes is 16.) 

BSS supports the highest transaction volume. When 
chunk sampling is not implemented, it becomes 
evident that the saturation point aligns with the 
original sui blockchain's configuration. In a local area 
network (LAN) setup with minimal communication 
overhead, the system's performance likely showcases 
similarities in both throughput and latency. 

 
Upon applying chunk sampling, a reduction in 

overall latency can be verified. With a decrease in the 
data size transferred from the client to the S-node, 
there appears to be a corresponding decrease in the 
overall latency. 

 
Fig. 6. BSS throughput vs. latency (BSS client is in Seoul. S-nodes are 

distributed equally through Seoul, N.Virginia, N.California, and 
Sydney. 

Even within a wide area network (WAN) setting, 
it's evident that BSS supports the highest transaction 

volume. At a low sending rate, the impact on latency 
remains relatively minor. However, as the sending rate 
escalates, the influence of transmission time on data 
size becomes more pronounced, leading to observable 
differences in latency. 

 
Fig. 7. Storage cost of BSS compared to BSS without chunk sampling 

We conduct an experiment on block storage cost 
under LAN environment, where S-nodes and BSS 
client are in Seoul, the number of auditors is 4, and the 
send rate of transactions is 10,000 txs/s. Without 
chunk sampling, all block data are stored equally in 
every S-node and it leads to storage overhead in each 
S-node. However, when we apply chunk sampling to 
lessen the storage overhead of each S-node, block 
storage cost reduces by a quarter as each S-node gets a 
responsibility to each chunk of the block. 

 
Fig. 8. BSS Throughput vs. number of malicious S-nodes 

  

 
Fig. 9. BSS Latency vs. number of malicious S-nodes (BSS client and S-

nodes are in Seoul. Transaction send rate is 10,000 txs/s. The number 
of S-nodes is 16.) 
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In order to assess resilience against Byzantine S-
nodes, we vary the number of malicious S-nodes from 
0 to 5. When both input and output remain 
unprocessed, the corresponding S-node is identified as 
displaying malicious behavior. With regards to BSS, 
introducing malicious S-nodes resulted in a decrease in 
throughput of approximately 6.8% when compared to 
the scenario absent of malicious nodes. Furthermore, 
for BSS, the presence of malicious S-nodes led to an 
increase in latency by approximately 52 ms compared 
to the scenario where no malicious S-nodes were 
involved. This latency increase can be attributed to the 
deliberate non-responsiveness of the malicious S-
nodes to input and output. Remarkably, BSS continues 
to exhibit commendable performance even when 
subjected to Byzantine attacks.  

V. CONCLUSION  
We present BSS, an effective block archive system 

designed to accommodate any blockchain, including 
Ethereum. Upon distributing one S-node in each of the 
four regions, it was verified that BSS exhibited a latency 
of approximately 3 seconds and a throughput of roughly 
73,000 txs/s. Furthermore, with all 16 S-nodes 
positioned in Seoul, even in the presence of five 
malicious S-nodes, a throughput of roughly 8,100 tx/s 
and a latency of around 0.2 seconds were attained when 
subjected to a send rate of 10,000 txs/s. Experimental 
results conducted on AWS demonstrate that BSS not 
only achieves substantial block availability but also 
maintains commendable performance levels, even 
when subjected to Byzantine attacks.  

At present, our system design is predicated on the 
even distribution of S-nodes and BSS clients throughout 
the entire region. Consequently, we did not account for 
scenarios where nodes in specific regions are affected 
by geographical faults, and mechanisms for block 
recovery irrespective of the value of f were not included 
in our considerations. Developing workload 
distribution and recovery mechanisms that account for 
the geographical faults of both S-nodes and BSS clients 
remains a potential avenue for future exploration. 
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