

BSS: An Efficient Block Storage System for Block
Archive Service in Blockchains

Woochang Jeong
Computer Science and Engineering

POSTECH
Pohang, South Korea

wcjeong@postech.ac.kr

Chanik Park
Computer Science and Engineering

POSTECH
Pohang, South Korea
cipark@postech.ac.kr

Abstract — While blockchain enables decentralized services
with zero trust, every node needs to store continuously
generating block information in their local storage. Because
blocks are generating continuously in blockchain, there exists a
significant storage space burden on each node. A typical
technique is to introduce a special node customized for block
archiving. In case of Ethereum, a special node called block
archive node to store all historical blocks. With the help of block
archive node, each full node is enough to maintain only latest
128 blocks. In this paper, we propose BSS, an efficient block
storage system for block archive service in blockchains, which
can support any blockchain including Ethereum. BSS is a
distributed system consisting of some number of block archive
nodes. The storage overhead of BSS is O(1). The main idea is to
encode each block into several small chunks and enforce each
archive node to store one chunk, not an entire block. BSS also
supports Byzantine tolerant chunk storage protocol for possible
Byzantine attacks by block archive nodes. It is shown from the
experiments on AWS, BSS enables both substantial block
availability and notable performance even in Byzantine attacks.

Keywords—Blockchain, Byzantine Fault Tolerance, storage

I. INTRODUCTION
Blockchain is a decentralized and distributed ledger

technology that records transactions in a secure and
immutable manner. Each new transaction is added to a
block, which is then linked to the previous block,
creating a chain of blocks. Storage overhead in
blockchain refers to the additional data and resources
required to maintain and store the blockchain's data
beyond the actual transaction information. While
blockchain enables decentralized services with zero
trust, every node needs to store continously generating
block information. Thus, given a nodes in a blockchain,
the storage overhead is O(n). (n: the number of
blockchain nodes). Storage overhead refers to the size
of block data accumulated in blockchain nodes, and on
a general blockchain, storage overhead increases
linearly as the number of nodes increases.

For an example, Assuming that the size of each
generated block is 1MiB, the number of tx included in
one block is 1000, and transaction data occurs annually
(24 hours / day * 365 days / year). Assume that
Hyperledger Fabric is used to process transaction data
for VISA, which processes large amounts of
payment/payment transaction data. In the case of VISA,
140,839M txs were processed annually in 2020 [1], and
when converted into TPS units, approximately 4500
TPS comes out. Accordingly, the blockchain node
storage size per 4500 TPS is calculated at about 135.338

TiB per year, and it can be confirmed that the
blockchain node storage size increases by about 676
TiB over 5 years. It can be confirmed that this is a large
number when considering the storage capacity for
actual data.

Efforts have been undertaken to mitigate the storage
overhead associated with blockchains. Selective
blockchain transaction pruning [2] and implementations
such as Nano [3] and introduce pruning mechanisms,
permitting nodes to discard outdated transaction data
that is no longer necessary for validation purposes. This
approach aids in diminishing storage prerequisites
while upholding network security and integrity.
Sharding, as demonstrated by methods like Elastico [4],
Omniledger [5], and RapidChain [6], involves
segmenting the blockchain into smaller sections or
shards, each managed by distinct nodes. This division
aids in distributing the storage load across nodes,
subsequently enhancing scalability. Slimchain [7] and
distributed off-chain storage of medical data [8] adopt
off-chain or layer-2 solutions, to relocate specific
transactions or data away from the primary blockchain,
thereby alleviating storage and processing pressures on
the core chain. The well-known Ethereum blockchain
[10] employs a specialized node known as the block
archive node, responsible for storing all historical
blocks. Consequently, each full node is solely required
to maintain the most recent 128 blocks.

The recent study in [9] proposed a general and robust
block storage system based on a large-scale storage
subsystem such as cloud storage. However, the service
architecture of [9] has two main issues to be addressed.
First, its block availability is limited due to its
dependency on a large-scale storage subsystem such as
cloud storage Second, its writing performance is
constrained due to the application of the BFT consensus
mechanism. Contemporary blockchains like Aptos [11]
and Sui [12] exhibit remarkable performance,
surpassing 100K TPS (transactions per second). So, it is
imperative to enhance the write performance of a block
archive service architecture.

In this paper, we propose BSS, an efficient block
storage system for block archive service in Blockchains.
BSS is characterized with high performance and low
overhead of block storage. BSS consists of certain
number of block archive nodes. The main idea is to
encode each block into several small chunks and

1257979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

enforce each archive node to store one chunk, not an
entire block. BSS also supports Byzantine tolerant
chunk storage protocol for possible Byzantine attacks
by block archive nodes.

We make the following contributions:

• We propose BSS that guarantees block
availability through S-node set. BSS does not
depend on any particular storage service.

• To our understanding, we introduce the
capability to audit block availability using the S-
node set for the first time.

• By applying block encoding and byzantine
reliable broadcast to the storage network, we
support notable performance even in byzantine
attacks.

• BSS supports Byzantine tolerant chunk storage
protocol for possible Byzantine attacks by block
archive nodes to achieve O(1) block storage
overhead.

We make the assumption that malicious S-nodes are
susceptible to Byzantine node failures. However, we
also stipulate that these malicious S-nodes are unable to
compromise cryptographic techniques. Within our
framework, the communication model among S-nodes
is based on the partially synchronous network.

II. BSS: AN EFFICIENT BLOCK STORAGE SYSTEM
FOR BLOCK ARCHIVE SERVICE IN BLOCKCHAINS
BSS refers to a storage service that proceeds with

consensus and storage of block data independently of
the blockchain network. BSS takes a distinct approach
by exclusively utilizing a storage network, devoid of
any reliance on external cloud storage.

Fig. 1. The overall architecture of BSS. BSS undertakes dual roles. The first

involves conducting audits to ensure block availability, achieved
through regular auditing and reorganization processes. The second
facet pertains to its capacity for byzantine-tolerant writing, enabling
block writing while upholding block availability within the storage
network, even in the presence of a byzantine S-node. This assurance of
block availability is established by means of chunk exchanges
facilitated by byzantine reliable broadcasting among S-nodes.

A. System Architecture
Within the framework of BSS, a fundamental

element comprises a storage network comprising S-
nodes. Through the conveyance of blocks across this
storage network and the preservation of block metadata,
it becomes achievable to establish the accessibility of
these blocks. When employing BSS, this capability
might materialize as a blockchain archive node tasked
with upholding the entirety of block data, or
alternatively, as a blockchain full node. The BSS client
interacts with the BSS system through the utilization of
three core APIs.

The first API facilitates the propagation of blocks. A
block is dispatched to the storage network via the
corresponding API. Upon delivery, the block undergoes
erasure coding through a block encoder positioned
within the storage network. Following this encoding, the
block is disseminated throughout the storage network.
Notably, the applied encoding follows the scheme (N,
N-2f), enabling the reconstruction of a chunk even if
solely N-2f fragments are available among the divided
parts. This resilience stems from the necessity for N-f
votes during the subsequent consensus phase to verify
the availability of a specific block. Consequently, even
if a maximum of f byzantine nodes exhibit malicious
behavior during the recovery process, the block can be
restored without complications. Subsequently, S-nodes
on the storage network validate the assurance of block
availability and store pertinent block metadata as
corroborative evidence within individual local DAG
structures.

The second aspect involves chunk sampling. The
BSS client triggers the audit BA API on the storage
network to assess the accessibility of the block it has
conveyed. By referring to the block metadata established
on the basis of the received block, the storage network
verifies the availability of the requested block.

Lastly, there is the concept of block re-encoding.
Instances might arise where BSS clients lose blocks or
surpass the legally stipulated retention period. To
address block recovery under such circumstances, the
BSS client employs the block re-encoding API to
interact with the storage network. Subsequently, the
storage network supplies the BSS client with a block
chunk corresponding to the designated block height.
This provision is made possible by referencing the block
metadata stored by each S-node (Fig. 2).

1258

Fig. 2. An illustration of how BSS operates for a given block with height h

B. Chunk Sampling
Chunk sampling entails the process of segmenting

blocks into chunks equivalent to the count of S-nodes
within the storage network, subsequently dispersing and
archiving them across the storage network. This
technique facilitates the distribution and storage of
chunks associated with blocks on the storage network,
thereby enabling the audit of block availability.

The process commences when the BSS client
initiates an audit inquiry regarding block availability
within the storage network. Via the relevant request, the
BSS client transmits the block associated with a
particular height to the storage network. Subsequently,
the conveyed block undergoes encoding through the
block encoder module positioned within the storage
network. During this encoding phase, the block is
partitioned into N chunks using a (N, N-2f) chunking
methodology. To validate the coherence between
chunks and their respective blocks, the block encoder
module constructs a merkle tree utilizing chunks as
terminal nodes.

The generated block chunk, accompanied by
pertinent chunk-related metadata, is dispatched to the S-
nodes. This information encompasses the chunk's
associated S-node ID, block height, merkle root, merkle
path for the chunk, and the sender's signature. To
guarantee the comprehensive propagation of each block
chunk to its designated S-node, a dependable
background process of chunk reliable broadcasting is
executed.

Based on the broadcast block chunk, each S-node
issues a block proposal based on the chunk in charge of
each S-node to confirm that the block has been
sufficiently propagated on the storage network. In the
case of a block proposal, it includes the block hash in
addition to the existing chunk information, and the
certificates for the block proposal of the previous height.

When each S-node receives a block proposal from a
specific S-node, it confirms that it has a chunk for the
block and casts a vote for the proposal. In the case of
Vote, the vote includes the chunk for the block, S-node
id, block height, merkle path for the chunk you have,
merkle root, block hash, and signature.

From the standpoint of each S-node, if n-f or more
block votes for a specific block proposal are gathered, a
block certificate is generated, and the DAG node
composed of the block proposal and block certificate is
stored in its local storage. Each S-node has block
metadata as evidence proving that the block has been
sufficiently distributed to the storage network. When
metadata is available from more than n-f distinct nodes
for a specific-height block, it ensures the distribution of
over n-f chunks for that particular block throughout the
storage network. Consequently, if n-f or a higher
number of metadata instances are present for the block
at the corresponding height, the commitment of the
block pertaining to that specific height is confirmed.

In response to the request sent by the BSS client for
block availability audit the other day, the S-node
transmits metadata of the corresponding height to the
BSS client. After the block metadata is finally created
at the S-node level, the block data is removed because
the block information is no longer needed.

Fig. 3. Chunk Sampling. Dashed line-box denotes for missing block. The
availability auditor verifies whether there exist over n-f metadata
entries for the block at that specific height.

C. Block Re-encoding
Block re-encoding refers to the method of encoding

N-divided block chunks back into the initial complete
block structure. This technique involves soliciting block
retrieval from Chain for blocks absent in the possession
of the BSS client, followed by the re-encoding of the
primary block using the block chunks distributed
throughout the storage network.

Block Re-encoding serves as a method applicable
when an ample quantity of block chunks (exceeding n-
f) has been distributed across the storage network via
chunk sampling. In scenarios where the distribution of
more than n-f chunks has not yet taken place within the
storage network, a response indicating that chunk
sampling remains underway is conveyed back to the
BSS client. In alignment with the chunk sampling
procedure mentioned earlier, given the capacity of
sincere S-nodes to assure the propagation of each chunk
through reliable broadcasting across the storage
network, the assurance of block re-encoding is
ultimately established.

Assume that each S-node guarantees the availability
of a block requested for recovery through block
metadata. Then, each S-node can re-generate a block for
that height based on n-f or more metadata for that block.
The S-node completes the operation of block re-
encoding by sending the re-generated block back to the
BSS client.

1259

Fig. 4. Block Re-encoding. Block encoder/decoder recovers the missing
blocks from the BSS client.

III. SECURITY ANALYSIS
For BSS, the following set of five security properties

are upheld to fulfill the prerequisites set by established
storage systems.

Theorem 1. (Validity) If more than n-f S-nodes
agreed on a specific block, the specific S-node
submitted a block proposal corresponding to the block.

Proof. As described above, the signature of sender is
included in the block proposal. The meaning that more
than n-f S-nodes agree on a specific block means that in
the case of the block, all honest S-nodes verify the
signature in the block proposal and vote for the block
proposal.

Theorem 2. (Agreement) If one honest S-node
finally commits a block of a certain height, and another
honest S-node also commits a block of that height, the
block is the same.

Proof. Each S-node votes after verifying that it
contains a valid merkle root. Consider dividing the case
into two commit conditions for the block. (1) If you have
at least one certificate in the current round, certificates
from different S-nodes in the same round all point to the
same block. If it points to another block, each S-node
does not vote. (2) Let r' be the round in which a
certificate for at least one block proposal is obtained in
the future round, when a certificate for at least one block
proposal is obtained. n-f certificates of r'-1 belonging to
r' certificate are fixed.

That is, the n-f certificates of r'-1 are the certificates
of the previous round agreed upon by n-f or more S-
nodes. In the same way, the certificates of r'-2, r'-3..., r
mean that the block of each round has been agreed upon
by all honest S-nodes. Eventually, the same block is
committed for all previous rounds.

Theorem 3. (Termination) Always each block has
the same consensus outcome.

Proof. We assume partially synchronous network.
That is, messages exchanged between S-nodes and S-
nodes arrive sometime after the global stabilization time
(GST). Chunks for blocks must reach each S-node after
GST, and all n-f honest S-nodes generate block

proposals based on the received chunks. Since block
proposals generated from each S-node reach all honest
S-nodes, votes for the corresponding block proposal are
guaranteed to be received from all honest S-nodes. Since
the result of consensus on a block is determined by
whether or not a certificate for the block is received, the
result of consensus on each block must be derived at
some point.

Theorem 4. (Availability) If the BSS client calls the
block re-encoding API, the S-node can finally
reconstruct the block Bh.

Proof. Committing the block Bh means that the
certificate for the block proposals Bhi' corresponding to
the corresponding block exists. That is, it means that
more than n-f chunks for block Bh are distributed to the
storage network. Even if up to f chunks of a malicious
S-node are lost after voting, since the EC(n, n-2f)
encoding scheme is applied, even if only n-f-f = n-2f
chunks are collected, block Bh can be reconstructed.

Theorem 5. (Integrity) All honest S-node Si returns
the same block Bh for block re-encoding request invoked
by BSS client.

Proof. In a situation where the height is fixed, all
blocks of a specific height that are committed are the
same. That is, with respect to the committed block Bh,
block Bh can be reconstructed through chunks of S-
nodes corresponding to votes included in block
proposals Bhi'.

IV. EVALUATION

A. Experimental Setup
We performed a performance assessment using the

AWS cloud [13] to address three primary research
questions. (1) Does it deliver elevated throughput and
minimal latency in typical scenarios devoid of
Byzantine S-nodes? (2) Does it exhibit reduced storage
overhead in contrast to scenarios where chunk
sampling is omitted? (3) Does BSS maintain
satisfactory throughput and latency levels even within
a common setting involving Byzantine S-nodes?

For the AWS cloud instance type, the AWS cloud
instance type for the BSS client and all S-nodes is
fixed as m5d.xlarge (# of vCPUs: 4, RAM 16GiB,
SSD: 1 x 150GB NVMe, Network Bandwidth:
10Gbps) proceeded. Deployment regions were divided
into four regions: Seoul (ap-northeast-2), N.Virginia
(us-east-1), N.California (us-west-1), and Sydney (ap-
northeast-2). There is one BSS client, and the number
of S-nodes has changed from 4 to 16. For the
experimental workload, the tx size was 2,822 bytes,
which was set according to the average hyperledger
fabric average tx size, and the batch size was measured
as 100.

We undertook a comprehensive comparative
examination of three distinct systems. The primary
reference system is the sui blockchain [12]. The
second system encompasses BSS without the

1260

incorporation of chunk sampling. In scenarios where
chunk sampling is absent, entire blocks are exchanged
directly between S-nodes. Contrasting the sui
blockchain, this particular system deploys a linearized
2-phase consensus process to create a DAG node for a
block suggested by a leader node. Subsequent to the
commitment of the corresponding DAG node, a
conclusive sequence is established for this DAG node
concerning the corresponding DAG node linked to the
block proposed by the previously endorsed leader
node. Our ultimate emphasis in this performance
evaluation centers around the BSS system integrated
with chunk sampling.
B. Experiment

Fig. 5. BSS throughput vs. latency (S-nodes and BSS client are in Seoul.
The number of S-nodes is 16.)

BSS supports the highest transaction volume. When
chunk sampling is not implemented, it becomes
evident that the saturation point aligns with the
original sui blockchain's configuration. In a local area
network (LAN) setup with minimal communication
overhead, the system's performance likely showcases
similarities in both throughput and latency.

Upon applying chunk sampling, a reduction in

overall latency can be verified. With a decrease in the
data size transferred from the client to the S-node,
there appears to be a corresponding decrease in the
overall latency.

Fig. 6. BSS throughput vs. latency (BSS client is in Seoul. S-nodes are

distributed equally through Seoul, N.Virginia, N.California, and
Sydney.

Even within a wide area network (WAN) setting,
it's evident that BSS supports the highest transaction

volume. At a low sending rate, the impact on latency
remains relatively minor. However, as the sending rate
escalates, the influence of transmission time on data
size becomes more pronounced, leading to observable
differences in latency.

Fig. 7. Storage cost of BSS compared to BSS without chunk sampling

We conduct an experiment on block storage cost
under LAN environment, where S-nodes and BSS
client are in Seoul, the number of auditors is 4, and the
send rate of transactions is 10,000 txs/s. Without
chunk sampling, all block data are stored equally in
every S-node and it leads to storage overhead in each
S-node. However, when we apply chunk sampling to
lessen the storage overhead of each S-node, block
storage cost reduces by a quarter as each S-node gets a
responsibility to each chunk of the block.

Fig. 8. BSS Throughput vs. number of malicious S-nodes

Fig. 9. BSS Latency vs. number of malicious S-nodes (BSS client and S-

nodes are in Seoul. Transaction send rate is 10,000 txs/s. The number
of S-nodes is 16.)

1261

In order to assess resilience against Byzantine S-
nodes, we vary the number of malicious S-nodes from
0 to 5. When both input and output remain
unprocessed, the corresponding S-node is identified as
displaying malicious behavior. With regards to BSS,
introducing malicious S-nodes resulted in a decrease in
throughput of approximately 6.8% when compared to
the scenario absent of malicious nodes. Furthermore,
for BSS, the presence of malicious S-nodes led to an
increase in latency by approximately 52 ms compared
to the scenario where no malicious S-nodes were
involved. This latency increase can be attributed to the
deliberate non-responsiveness of the malicious S-
nodes to input and output. Remarkably, BSS continues
to exhibit commendable performance even when
subjected to Byzantine attacks.

V. CONCLUSION
We present BSS, an effective block archive system

designed to accommodate any blockchain, including
Ethereum. Upon distributing one S-node in each of the
four regions, it was verified that BSS exhibited a latency
of approximately 3 seconds and a throughput of roughly
73,000 txs/s. Furthermore, with all 16 S-nodes
positioned in Seoul, even in the presence of five
malicious S-nodes, a throughput of roughly 8,100 tx/s
and a latency of around 0.2 seconds were attained when
subjected to a send rate of 10,000 txs/s. Experimental
results conducted on AWS demonstrate that BSS not
only achieves substantial block availability but also
maintains commendable performance levels, even
when subjected to Byzantine attacks.

At present, our system design is predicated on the
even distribution of S-nodes and BSS clients throughout
the entire region. Consequently, we did not account for
scenarios where nodes in specific regions are affected
by geographical faults, and mechanisms for block
recovery irrespective of the value of f were not included
in our considerations. Developing workload
distribution and recovery mechanisms that account for
the geographical faults of both S-nodes and BSS clients
remains a potential avenue for future exploration.

ACKNOWLEDGMENT
This work was supported by Institute of Information

& communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT)
(2021-0-00136, Development of Big Blockchain Data
Highly scalable Distributed Storage Technology for
Increased Application.

REFERENCES
[1] Sousa, João & Bessani, Alysson & Vukolic, Marko. (2018). A

Byzantine Fault-Tolerant Ordering Service for the Hyperledger Fabric
Blockchain Platform. 51-58. 10.1109/DSN.2018.00018.

[2] E. Palm, O. Schelén and U. Bodin, "Selective Blockchain Transaction
Pruning and State Derivability," 2018 Crypto Valley Conference on
Blockchain Technology (CVCBT), Zug, Switzerland, 2018, pp. 31-40,
doi: 10.1109/CVCBT.2018.00009.

[3] LeMahieu, Colin. "Nano: A feeless distributed cryptocurrency
network." Nano [Online resource]. URL: https://nano.
org/en/whitepaper (date of access: 24.03. 2018) 16 (2018): 17.

[4] Luu, Loi, et al. "A secure sharding protocol for open blockchains."
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security. 2016..

[5] Kokoris-Kogias, Eleftherios, et al. "Omniledger: A secure, scale-out,
decentralized ledger via sharding." 2018 IEEE symposium on security
and privacy (SP). IEEE, 2018.

[6] Zamani, Mahdi, Mahnush Movahedi, and Mariana Raykova.
"Rapidchain: Scaling blockchain via full sharding." Proceedings of the
2018 ACM SIGSAC conference on computer and communications
security. 2018.

[7] Xu, Cheng, et al. "SlimChain: Scaling blockchain transactions through
off-chain storage and parallel processing." Proceedings of the VLDB
Endowment 14.11 (2021): 2314-2326.

[8] Kumar, Randhir, Ningrinla Marchang, and Rakesh Tripathi.
"Distributed off-chain storage of patient diagnostic reports in
healthcare system using IPFS and blockchain." 2020 International
conference on communication systems & networks (COMSNETS).
IEEE, 2020.

[9] Jeong, Woochang, and Chanik Park. "A General and Robust
Blockchain Storage System based on External Storage Service." 2022
13th International Conference on Information and Communication
Technology Convergence (ICTC). IEEE, 2022.

[10] Wood, Gavin. "Ethereum: A secure decentralised generalised
transaction ledger." Ethereum project yellow paper 151.2014 (2014):
1-32.

[11] Brandon Williams et al. Aptos. https://github.com/aptos-labs/aptos-
core, 2022.

[12] Spiegelman, Alexander, et al. "Bullshark: Dag bft protocols made
practical." Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. 2022.

[13] AWS Cloud, aws.amazon.com

1262

