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Abstract—A number of denoising-based methods have been
proposed to defend against adversarial fingerprint attacks. How-
ever, these methods inherently rely on having a clean image that
corresponds to each adversarial fingerprint image. In this paper,
we propose a novel denoising-based defense method without the
need for clean fingerprint images. Our approach leverages a
Noise2Noise mechanism, which performs denoising based on the
noisy dataset. This enables us to effectively eliminate any adver-
sarial noise that may be embedded in fingerprint images without
training on clean fingerprint images. The experimental results
on real-world datasets confirm that our method is robust against
untrained adversarial fingerprint attacks while outperforming
existing methods.

Index Terms—fingerprint liveness detection, adversarial attack,
deep learning, denoising

I. INTRODUCTION

With the continuous advancement of deep learning technol-
ogy in fingerprint liveness detection, fingerprint authentication
systems are increasingly being employed in various domains,
including user authentication [1] and access control [2] [3].
However, recently, there have been cases of adversarial fin-
gerprint examples observed, where adversarial noises inten-
tionally induce misclassification of target deep learning models
for fingerprint liveness detection. These adversarial fingerprint
attacks pose significant security concerns, such as privacy
breaches, identity theft, and financial losses [4] [5].

To address these issues, various methods have been pro-
posed, such as detecting adversarial examples and isolating
them from the input data, as well as generating models
trained on adversarial examples [6]. Moreover, denoising-
based approaches have been proposed, which rely on the
elimination of adversarial noise through an image reconstruc-
tion mechanism [7] [8]. However, existing denoising-based
methods typically require labeled data in the form of pairs of
noisy images and clean images, which can be time-consuming
and costly to acquire. Additionally, they may exhibit degraded
performance for untrained types of adversarial noises [9].
Consequently, these existing methods do not provide robust
defense performance against adversarial fingerprint attacks.
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In this paper, we propose a novel denoising-based defense
method that leverages Noise2Noise (N2N), a denoising tech-
nique that can be trained without the need for clean images.
The N2N mechanism [10] involves the random generation
of two noisy images, each following a zero-mean distribu-
tion (not necessarily the same) of an original image. These
generated images are then utilized as the source and target
for reconstructing the original image. In other words, N2N
performs denoising by training a mapping from a noisy image
(i.e., source image) to the other noisy image (i.e., target
image). Existing denoising-based methods were limited in
their ability to effectively defend against various types of ad-
versarial attacks when the required corresponding clean images
for training were unavailable due to insufficient adversarial
example datasets. However, our approach overcomes these
limitations by leveraging N2N, which does not rely on clean
images. Based on the N2N mechanism, our proposed method
effectively eliminates any adversarial noise embedded in fin-
gerprint images by leveraging the information learned from
adversarial examples. Subsequently, the denoised fingerprint
images are passed to the classifier, enabling a robust liveness
detection against adversarial attacks.

The paper makes the following contributions: (1) proposing
a novel denoising-based defense method that eliminates the
reliance on clean images; (2) achieving robust defense perfor-
mance against a range of adversarial attacks; (3) implementing
a prototype of our proposed method; and (4) validating the
effectiveness of our method using a real-world dataset.

The organization of this paper is as follows: Section 2
discusses the related work, Section 3 presents our proposed
method, Section 4 describes our evaluation, and Section 5
provides the conclusions.

II. RELATED WORK

A. Adversarial attack

An adversarial attack is a specific type of attack that
manipulates input images by adding adversarial noise. The
adversarial noise leads the target model to misclassify as
the attacker intends, and it is imperceptible to the naked
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eye. Goodfellow et al. [11] proposed the Fast Gradient Sign
Method (FGSM), which entails identifying the gradient of the
loss function for an input image and generating noise in the
direction that increases the loss. Madry et al. [12] introduced
Projected Gradient Descent (PGD), which involves updating
the adversarial noise by performing FGSM in multiple steps.

B. Defend against adversarial attacks with denoising

Denoising refers to the process of eliminating or reducing
noise in an image while preserving its important features.
Denoising is being widely used to recover the quality of
videos or images [13], or to defend against adversarial attacks
by eliminating adversarial noise [14]. F. Liao et al. [14]
proposed High-Level Representation Guided Denoiser (HGD),
which employs a denoiser trained with a loss function that
quantifies the difference between the original and adversarial
examples. T. Dai et al. [15] introduced Deep Image Prior
Driven Defense (DIPDefend), which reconstructs images with-
out prior learning by leveraging the properties of deep image
prior. This approach successfully eliminates adversarial noise
while accurately preserving the intrinsic structures of clean
images. Y. Bakhti et al. [16] proposed Deep Denoising Sparse
Autoencoder (DDSA), which eliminates or reduces adversarial
noise by employing dimensionality reduction in the image pre-
processing step. Denoising is widely employed as a defense
mechanism against adversarial attacks, but a reliable defense
method for adversarial fingerprint attacks has not yet been
proposed. Moreover, to train denoising models capable of
addressing a range of adversarial fingerprint attacks, it is
essential to obtain clean images corresponding to each attack.
However, obtaining clean images from adversarial fingerprint
images poses a considerable challenge due to the diverse types
of adversarial attacks, making the process costly. Hence, it is
required to design a new method that can effectively protect
against adversarial fingerprint attacks by training solely on
adversarial fingerprint images, without requiring clean images.

III. OUR APPROACH

In this paper, we propose a novel denoising-based defense
method against adversarial fingerprint attacks. Our proposed
method utilizes Noise2Noise (N2N), which effectively elimi-
nates the adversarial noise from the given fingerprint images
by performing denoising based on the noisy dataset. Our
proposed method provides robust defense performance against
adversarial fingerprint attacks without requiring clean images
for each attack image. As shown in Fig. 1, our proposed
method consists of two distinct steps. (1) N2N-based defense
model generation: A defense model is generated by training on
adversarial fingerprint datasets that contain various adversarial
noise additions, enabling effective denoising of the adversarial
noise. (2) N2N-based fingerprint liveness detection: Given
a fingerprint image, the defense model performs denoising,
and subsequently, a classifier determines the liveness of the
denoised image.

A. N2N-based defense model generation

In this step, a N2N-based defense model is trained using
a dataset composed of pairs of adversarial fingerprint images
with different adversarial noise additions. Specifically, in the
training phase, adversarial fingerprint images that include the
fingerprint region along with its surrounding margin are used.
During the acquisition of fingerprint images, factors such as
sensor types, fingerprint size, and acquisition methods can lead
to the inclusion of margins outside the fingerprint region in the
acquired images. These margin areas can serve as significant
embedding targets for adversarial noise. For each pair in
the dataset, which includes the source and target images as
illustrated in Fig. 1, our method involves cropping the margins
of both images and utilizing them as a pair to train the N2N-
based defense model.

arg min
θ

∑
i

L2(fθ(x̂i), ŷi), (1)

where x̂i represents the source margin image, ŷi represents
the target margin image, and fθ represents a collection of
parametric mappings. The N2N-based defense model is trained
by minimizing the difference between the images using a loss
function, L2, which calculates the squared difference between
the images and then computes the average across all pairs in
the dataset. In the inference phase, the trained model is utilized
to eliminate adversarial noise from the given fingerprint image.

B. N2N-based fingerprint liveness detection

In this step, the trained N2N-based defense model is utilized
to eliminate adversarial noise, followed by performing liveness
detection. The N2N-based defense model reconstructs a given
fingerprint image, which is then examined by a liveness detec-
tion classifier. This classifier is trained on original fingerprints
without embedded noise and infers a liveness score for each
given fingerprint image. The inferred score is subsequently
compared with a pre-defined threshold to determine the live-
ness status (i.e., alive or fake).

IV. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our proposed method,
we conducted evaluations based on the following research
questions:

• RQ#1: Does our proposed method provide effective de-
fense performance against “untrained” adversarial finger-
print attacks?

• RQ#2: Does our proposed method provide superior per-
formance compared to the existing denoising methods?

A. Experimental Setting

To evaluate our method, we selected the LivDet 2015
dataset [17], a real-world dataset that includes various finger-
print images acquired from different types of sensors (i.e.,
Green Bit, Digital Persona, Biometrika, and Crossmatch).
Among those, we selected the Green Bit dataset due to its
high vulnerability to adversarial attacks, including FGSM and
PGD [18]. The Green Bit dataset consists of 2,000 training

1279



Fig. 1. An Overview of Our Proposed Method

images (Alive: 1,000, Fake: 1,000) and 2,500 testing images
(Alive: 1,000, Fake: 1,500), each with a size of 500×500
pixels. For our target liveness detection classifier, we employed
ResNet-50, which has demonstrated superior performance in
fingerprint liveness detection [19]. With the ResNet-50 model
trained on the training images from the Green Bit dataset, we
compared its liveness detection performance on the original
testing images, testing images with adversarial attacks, and
testing images denoised by our methods.

To train our N2N-based defense model, we utilized a total
of 2,000 images from the Green Bit dataset, consisting of
800 images from the “alive” class and 1,200 images from the
“fake” class. For each fingerprint image, we created two ad-
versarial images using PGD (eps=0.3, alpha=2/255, iters=40)
and FGSM (eps=0.03) methods, respectively. Subsequently, we
cropped the non-fingerprint areas of each adversarial image to
a size of 128 × 128 and used them as training pairs. The
hyperparameters for the adversarial attacks were defined by

the authors.
We validated RQ#1 to evaluate the robustness of our pro-

posed method against untrained adversarial fingerprint attacks.
We assessed its defensive performance on adversarial images
that were not used during the training process. To generate
untrained adversarial fingerprint images, we adjusted the hy-
perparameters for each adversarial attack as follows: PGD
(eps=0.4, alpha=2/255, iters=40) and FGSM (eps=0.04).

We validated RQ#2 to assess the effectiveness of our
proposed method. We conducted a comparative analysis with
existing denoising methods, Deep Image Prior (DIP) [20] and
Self2Self (S2S) [21]. For DIP and S2S, we used the hyper-
parameters as defined by the respective authors: DIP (learn-
ing rate=0.01, loss function=MSE, and iteration=800) and
S2S (learning rate=0.0001, prediction=100, and step=1000).
For each adversarial attack (i.e., PGD and FGSM), we em-
ployed the same hyperparameters as RQ#1: PGD (eps=0.4,
alpha=2/255, iters=40) and FGSM (eps=0.04).
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TABLE I
THE RESULT OF OUR EXPERIMENT

Baseline
PGD [12] FGSM [11]

Adversarial
Attack Our Method Adversarial

Attack Our Method

93.16 0.00 64.99 60.00 79.79

The models used in the experiment were trained in the fol-
lowing environments—N2N and DIP: NVIDIA GeForce RTX
3090, python 3.8.0, pytorch 1.11.0+cu113; S2S and Resnet-
50: NVIDIA GeForce RTX 3090, python 3.8.0, Tensorflow
2.7.0. The hyperparameters used in the experiments were set
based on the parameters defined by the authors—N2N: Adam
optimizer, 0.001 learning rate, and 50 epochs; DIP: MSE
loss function, 0.01 learning rate, and 800 iterations; S2S: 100
prediction, 0.0001 learning rate, and 1000 steps; ResNet-50:
Adam optimizer, 0.001 learning rate, 8 batch size and 20
epochs.

B. Experimental Results

(RQ#1) Evaluation of the robustness towards untrained
adversarial fingerprint attacks: To validate RQ#1, we
implemented each adversarial attack (i.e., PGD and FGSM)
using hyperparameters that were not used during the training
process. Table I provides a detailed presentation of the results.
The baseline performance, which refers to the liveness detec-
tion performance on the clean image, was 93.16%. However,
when applying an adversarial fingerprint attack using PGD,
the baseline performance decreased to 0.00%. On the other
hand, by applying our proposed method to the adversarial
images, the performance increased to 64.99%. Similarly, when
performing an adversarial fingerprint attack using FGSM,
the baseline performance decreased to 60.00%. However, by
applying our proposed method to the adversarial images, the
performance increased to 79.79%.

The liveness detection performance of the adversarial im-
ages using PGD increased by 64.99%p when applying our
proposed method. In the case of adversarial images using
FGSM, the performance increased by 19.79%p when applying
our proposed method. Although the increase in the liveness
detection performance is relatively low in the case of FGSM,
this is primarily because the liveness detection performance on
the adversarial images was already relatively high at 60.00%.
However, in the case of PGD, the improvement in liveness
detection performance was significant. These results confirm
the robustness of our proposed method against untrained
adversarial fingerprint attacks.

(RQ#2) Comparison of the defense performance against
adversarial fingerprint attacks between our method and
existing denoising methods: To validate RQ#2, we con-
ducted a comparative analysis with existing denoising meth-
ods, DIP and S2S. We employed each adversarial fingerprint
attack (i.e., PGD and FGSM), using hyperparameters that were
not used during the training process. Fig. 2 provides a detailed
presentation of the results. The liveness detection performance

Fig. 2. A performance comparison of presentation attack detection between
existing image reconstruction methods (DIP [20], S2S [21]) and our proposed
method for each adversarial attack (PGD [12], FGSM [11]).

on adversarial images without denoising was 0.00% for PGD
and 60.00% for FGSM, respectively. When reconstructing
the adversarial images using DIP, the liveness detection
performance was 40.00% for PGD and 40.00% for FGSM,
respectively. When reconstructing the adversarial images using
S2S, the liveness detection performance was 40.00% for PGD
and 39.80% for FGSM, respectively. However, when recon-
structing the adversarial images using our proposed method,
the liveness detection performance significantly improved to
64.99% for PGD and 79.79% for FGSM, respectively.

V. CONCLUSION

In this paper, we proposed a new defense method that effec-
tively eliminates adversarial noises added to fingerprint images
by training solely on adversarial fingerprint images without
relying on clean images. To achieve this, we employed N2N
as the basis of our approach. Our experimental results confirm
that our method is robust against untrained adversarial finger-
print attacks. Furthermore, our method significantly improves
the compromised liveness detection performance, which is
degraded by adversarial fingerprint attacks, in comparison to
existing denoising methods (i.e., DIP and S2S). Our future
work involves conducting extended evaluations on various
types of adversarial attacks and fingerprint datasets. Addition-
ally, we plan to assess the applicability of the proposed method
to adversarial attacks in face recognition systems.
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