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Abstract— On-device systems generally have limitations on 

computational resources, and there are various types of 

hardware and neural network engines supporting them. Due to 

the limitations of computational resources, on-device systems 

often only execute inference using a model trained in a personal 

computer or server system. Therefore, in order to use the 

trained model in various on-device environments, it is necessary 

to provide functions that support transformation of the neural 

network model, optimization of the neural network model, and 

execution of inference for each neural network engine to suit the 

on-device environment using the neural network model. In this 

paper, we implemented an on-device neural network model 

transformation framework that receives the trained neural 

network model and the environment information of the target 

on-device and creates a neural network model that can be 

performed on-device. This framework improved transformation 

efficiency by using a standard neural network model format 

based on an open source project called ONNX, and supported 

neural network inference engines such as TensorRT, TVM, and 

PyTorch. In the future, this framework will be supplemented 

with functions such as automatic generation of neural networks, 

linkage with neural network learning frameworks, and 

expansion of support for various inference engines.  
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I. INTRODUCTION  

Neural networks are used in various fields such as image 
recognition, voice recognition, and language recognition. In 
order to implement such an artificial intelligence service using 
a neural network, a neural network structure is defined, and a 
neural network model is trained by using a neural network 
engine and data for learning. Then, in order to obtain an 
inference result such as image recognition, a neural network 
execution engine is installed on the hardware where the neural 
network is to be executed, and data to be recognized is input 
to the trained neural network model to obtain a result. 

As neural network engines that train or infer neural 
networks, PyTorch[1], Tensorflow[2], and Caffe[3] have been 
developed. Neural network training requires a large amount of 
data processing and high-performance computational 
performance. On the other hand, the inference process can be 
performed even in an environment where computational 
resources are relatively scarce. Therefore, most of the above 
engines perform the learning process on a personal computer 
or a server computer. However, the inferencing process may 

be executed on a personal computer or a server computer 
depending on the type of service, or may also be executed on 
an on-device such as an embedded system. 

This paper deals with the implementation of a framework 
that transforms neural network models trained in other 
systems and generates execution codes for on-device so that 
they can be executed on-devices. 

This neural network transformation framework receives 
the neural network model trained in PyTorch and user 
requirements, and provides functions to automatically 
generate executable codes on the target on-device. 

This paper describes the characteristics of on-device in 
Chapter 2, deals with the standard model format for neural 
network in Chapter 3, discusses the structure and operation 
process of the framework in Chapter 4, and describes the 
conclusion in Chapter 5. 

 

II. FEATURES OF ON-DEVICES 

On-device refers to an embedded system with limited 
memory size and computational performance. Unlike personal 
computers or server computers, on-device has limitations in 
the performance of hardware such as a central processing unit, 
graphic device, and memory. In addition, CPU (Central 
Processing Unit), GPU (Graphic Processing Unit), and NPU 
(Neural Processing Unit) used in on-device are more diverse 
than those of personal computers or servers. 

Depending on the diversity of on-device hardware, the 
types of operating system used are also diverse, such as 
embedded Linux, Android, and Windows. 

In addition, various engines for neural network inference 
are provided by GPU manufacturers, NPU manufacturers, or 
device manufacturers.  

Therefore, in order to execute a trained neural network 
model on a personal computer or server system, the trained 
model must first be transformed into a model for the inference 
engine supported by the on-device, and optimization of the 
neural network model to suit the on-device hardware 
environment must be supported. For developers who are not 
familiar with the on-devices to cope with the diversity of the 
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on-device,  sample execution code generation will be helpful 
for them. 

 

III. STANDARD FORMATS FOR NEURAL NETWORK MODELS 

The neural network model is a data structure that stores the 
weights in the neural network graph structure and the neural 
network nodes. The neural network model format depends on 
the neural network engine used. Each neural network engine 
defines its own neural network model structure. 

Therefore, the developer must transforms the neural 
network model when the engines used for training and 
inference are different. At this time, in the case of N:N 
transformation for each learning engine and reasoning engine, 
the structure becomes complicated and the efficiency will be 
decreased as shown in (a) in the figure below. In order to 
overcome this problem, a structure that defines a standard 
format expressing a neural network model and transforms it 
based on this can increase efficiency in the implementation 
and reusability of the transformer. 

 

(a) (a) N:N Transformation 

 

(b) (b) Neural Network Model Transformation based on Standard Format 

Fig. 1. The Types of Neural Network Model Transformation  

 

Typical neural network standard formats are ONNX(Open 
Neural Network eXchange)[4] and NNEF(Neural Network 
Exchange Format)[5]. ONNX is a format released as an open 
source, and NNEF is a format established by a standardization 
organization called Khronos Group. 

NNEF supports dynamic neural network definition by 
describing neural network model in a language similar to 
Python. ONNX stores the neural network structure and trained 
data with the protocol called Protobuf[6], and it saves graph 
information and learning results in a single file. Since this is 
an open source project rather than a standardization 
organization, adding and improving its functions is relatively 
fast. In addition, ONNX has the advantage of being developed 
even before the release of NNEF, the source is open, and there 
are many users. 

Since NNEF goes through the ratification process in its 
hierarchical organizational, it takes a lot of time to improve 
standards, and the number of neural network engines 
supported is very small compared with ONNX. Therefore, in 
this paper, ONNX, which supports a large number of engines, 
was adopted as a standard format. 

IV. NEURAL NETWORK MODEL TRANSFORMATION 

FRAMEWORK 

The neural network model transformation framework 
receives a model trained with PyTorch, a trained weight file, 
and transformation information. This transformation 
information contains information such as hardware and 
software environments of the target on-device and 
requirements for optimizing the neural network model. 

The neural network input model used PyTorch, which was 
used frequently in artificial intelligence industry, and the 
transformation information used YAML (Yet Another 
Markup Language) format. 

Target engines supported by this framework are PyTorch, 
TensorRT provided by NVIDIA, and TVM of Apache 
Foundation. This framework basically uses PyTorch as an 
input model, and allows ONNX to be input as well. It adopts 
ONNX as an intermediate format for ease of transformation 
between the trained model and the model of the target 
inference engine. 

For neutrality of operating systems such as Linux and 
Windows, this framework sets the Python language as the base 
programming language to generate neural network codes. 

TABLE I.  MAIN FUNCTIONS OF THE FRAMEWORK 

Category Supported Items 

Inference Engine PyTorch, TensorRT, TVM 

OS Linux, Windows 

Input Neural Network Model PyTorch, ONNX 

Programming Language Python 

 
 

 

Fig. 2. The structure of Neural Network Model Transformation Framework 

 

A. The Structure of the Framework 

The neural network model transformation framework has 
the structure shown in Fig 2. What is expressed on the left side 
of this figure are the transformation information containing the 
on-device environment and user requirements, which are 
expressed in YAML format.  

In addition, this framework additionally receives a neural 
network model trained with PyTorch and a weight data file. 
The right part of the figure is the output result, which includes 
the neural network model transformed and optimized for the 
target on-device environments and the template codes to run 
this model on the target. 

Neural Network Transformation Manager provides an API 
to receive neural network model and transformation 
information from the user and controls the operation pipeline 
of modules within the framework. 

Model Optimizer is to optimize the neural network model. 
It transforms the input PyTorch neural network model into 
ONNX and quantizes the weight data according to the user's 
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optimization request, thereby reducing the size of the weight 
data and improving the execution speed. This module 
basically uses the lightweight function provided by ONNX. 
Optimization Lib. includes ONNX's library that executes 
various algorithms for optimizing neural networks. 

Model Transformer provides a function to transform the 
ONNX neural network model to the target engine's neural 
network model format. ONNX-to-target Lib. includes a 
transformation library that transforms ONNX neural network 
models into formats used by target inference engines. 

The Template Code Generator automatically generates 
codes of the pre-processing for input image and the post-
processing for output data after neural network inference, so 
that the original neural network model can be executed on the 
target on-device. 

 The pre-processing for inputting the neural network 
includes functions of transforming the format and size of the 
input image to fit the neural network. The post-processing 
includes functions of analyzing the output of the neural 
network to extract ID of the recognized object, the location of 
the object, and accuracy information. The Sample Code 
DataBase includes example codes for executing neural 
networks for each inference engine, a library of pre-processing 
codes for neural network input, and a library of post-
processing codes for neural network output. 

 

 

 

 

 

 

 

Fig. 3. Operation Flows in The Framework 

 

B. Functional Tests of the Framework 

To test the functions of this framework, a YAML file for 
transformation information was created, and a neural network 
model trained with PyTorch and a weight data file were 
generated. In this test, YoloV5 was used for a neural network, 
and the neural network was trained using the COCO 
(Common Objects in Context) data sets. By inputting these 
into this framework, the output shown in the figure below was 
obtained, and the operation was confirmed by executing it on 
the Jetson Nano device. 

 

 
 

 
 

Fig. 4. Transformation Information File 

 

…
Fig. 5. Parts of Generated Neural Network Execution Codes for TensorRT  

 

 

 

 

 

 

Fig. 6.  Run-time Screen Image of the Generated Codes 

 

V. CONCLUDING REMARKS 

In this paper, the implementation of a neural network 
model transformation framework for on-device is described. 
This framework receives information about models trained 
with PyTorch, training data, and target on-device. This 
framework transforms and optimizes the neural network 
model so that the neural network model can operate on the 
target with input received from the user, and generates 
executable codes that can operate on the target engine and 
operating system. 

In the future, this framework will have deployment 
functions for the other on-devices, cloud systems, etc. In 
addition, it will be expanded to a neural network development 
tool through linkage with the automatic neural network 
generation framework or neural network training framework. 
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