
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

Neural Network Model Transformation Framework
for On-Devices

Kyung Hee Lee
AI Computing System SW Research

Section

ETRI
Daejeon, Korea

kyunghee@etri.re.kr

Ji Young Kwak
AI Computing System SW Research

Section

ETRI
Daejeon, Korea

jiyoung@etri.re.kr

Jaebok Park
AI Computing System SW Research

Section

ETRI
Daejeon, Korea

parkjb@etri.re.kr

Hong Soog Kim
AI Computing System SW

Research Section

ETRI
Daejeon, Korea

kimkk@etri.re.kr

Seon-tae Kim
AI Computing System SW Research

Section

ETRI
Daejeon, Korea

stkim10@etri.re.kr

Chang Sik Cho
AI Computing System SW Research

Section

ETRI
Daejeon, Korea
cscho@etri.re.kr

Abstract— On-device systems generally have limitations on

computational resources, and there are various types of

hardware and neural network engines supporting them. Due to

the limitations of computational resources, on-device systems

often only execute inference using a model trained in a personal

computer or server system. Therefore, in order to use the

trained model in various on-device environments, it is necessary

to provide functions that support transformation of the neural

network model, optimization of the neural network model, and

execution of inference for each neural network engine to suit the

on-device environment using the neural network model. In this

paper, we implemented an on-device neural network model

transformation framework that receives the trained neural

network model and the environment information of the target

on-device and creates a neural network model that can be

performed on-device. This framework improved transformation

efficiency by using a standard neural network model format

based on an open source project called ONNX, and supported

neural network inference engines such as TensorRT, TVM, and

PyTorch. In the future, this framework will be supplemented

with functions such as automatic generation of neural networks,

linkage with neural network learning frameworks, and

expansion of support for various inference engines.

Keywords—Neural Network, Model Transformation, ONNX

I. INTRODUCTION

Neural networks are used in various fields such as image
recognition, voice recognition, and language recognition. In
order to implement such an artificial intelligence service using
a neural network, a neural network structure is defined, and a
neural network model is trained by using a neural network
engine and data for learning. Then, in order to obtain an
inference result such as image recognition, a neural network
execution engine is installed on the hardware where the neural
network is to be executed, and data to be recognized is input
to the trained neural network model to obtain a result.

As neural network engines that train or infer neural
networks, PyTorch[1], Tensorflow[2], and Caffe[3] have been
developed. Neural network training requires a large amount of
data processing and high-performance computational
performance. On the other hand, the inference process can be
performed even in an environment where computational
resources are relatively scarce. Therefore, most of the above
engines perform the learning process on a personal computer
or a server computer. However, the inferencing process may

be executed on a personal computer or a server computer
depending on the type of service, or may also be executed on
an on-device such as an embedded system.

This paper deals with the implementation of a framework
that transforms neural network models trained in other
systems and generates execution codes for on-device so that
they can be executed on-devices.

This neural network transformation framework receives
the neural network model trained in PyTorch and user
requirements, and provides functions to automatically
generate executable codes on the target on-device.

This paper describes the characteristics of on-device in
Chapter 2, deals with the standard model format for neural
network in Chapter 3, discusses the structure and operation
process of the framework in Chapter 4, and describes the
conclusion in Chapter 5.

II. FEATURES OF ON-DEVICES

On-device refers to an embedded system with limited
memory size and computational performance. Unlike personal
computers or server computers, on-device has limitations in
the performance of hardware such as a central processing unit,
graphic device, and memory. In addition, CPU (Central
Processing Unit), GPU (Graphic Processing Unit), and NPU
(Neural Processing Unit) used in on-device are more diverse
than those of personal computers or servers.

Depending on the diversity of on-device hardware, the
types of operating system used are also diverse, such as
embedded Linux, Android, and Windows.

In addition, various engines for neural network inference
are provided by GPU manufacturers, NPU manufacturers, or
device manufacturers.

Therefore, in order to execute a trained neural network
model on a personal computer or server system, the trained
model must first be transformed into a model for the inference
engine supported by the on-device, and optimization of the
neural network model to suit the on-device hardware
environment must be supported. For developers who are not
familiar with the on-devices to cope with the diversity of the

1316979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

on-device, sample execution code generation will be helpful
for them.

III. STANDARD FORMATS FOR NEURAL NETWORK MODELS

The neural network model is a data structure that stores the
weights in the neural network graph structure and the neural
network nodes. The neural network model format depends on
the neural network engine used. Each neural network engine
defines its own neural network model structure.

Therefore, the developer must transforms the neural
network model when the engines used for training and
inference are different. At this time, in the case of N:N
transformation for each learning engine and reasoning engine,
the structure becomes complicated and the efficiency will be
decreased as shown in (a) in the figure below. In order to
overcome this problem, a structure that defines a standard
format expressing a neural network model and transforms it
based on this can increase efficiency in the implementation
and reusability of the transformer.

(a) (a) N:N Transformation

(b) (b) Neural Network Model Transformation based on Standard Format

Fig. 1. The Types of Neural Network Model Transformation

Typical neural network standard formats are ONNX(Open
Neural Network eXchange)[4] and NNEF(Neural Network
Exchange Format)[5]. ONNX is a format released as an open
source, and NNEF is a format established by a standardization
organization called Khronos Group.

NNEF supports dynamic neural network definition by
describing neural network model in a language similar to
Python. ONNX stores the neural network structure and trained
data with the protocol called Protobuf[6], and it saves graph
information and learning results in a single file. Since this is
an open source project rather than a standardization
organization, adding and improving its functions is relatively
fast. In addition, ONNX has the advantage of being developed
even before the release of NNEF, the source is open, and there
are many users.

Since NNEF goes through the ratification process in its
hierarchical organizational, it takes a lot of time to improve
standards, and the number of neural network engines
supported is very small compared with ONNX. Therefore, in
this paper, ONNX, which supports a large number of engines,
was adopted as a standard format.

IV. NEURAL NETWORK MODEL TRANSFORMATION

FRAMEWORK

The neural network model transformation framework
receives a model trained with PyTorch, a trained weight file,
and transformation information. This transformation
information contains information such as hardware and
software environments of the target on-device and
requirements for optimizing the neural network model.

The neural network input model used PyTorch, which was
used frequently in artificial intelligence industry, and the
transformation information used YAML (Yet Another
Markup Language) format.

Target engines supported by this framework are PyTorch,
TensorRT provided by NVIDIA, and TVM of Apache
Foundation. This framework basically uses PyTorch as an
input model, and allows ONNX to be input as well. It adopts
ONNX as an intermediate format for ease of transformation
between the trained model and the model of the target
inference engine.

For neutrality of operating systems such as Linux and
Windows, this framework sets the Python language as the base
programming language to generate neural network codes.

TABLE I. MAIN FUNCTIONS OF THE FRAMEWORK

Category Supported Items

Inference Engine PyTorch, TensorRT, TVM

OS Linux, Windows

Input Neural Network Model PyTorch, ONNX

Programming Language Python

Fig. 2. The structure of Neural Network Model Transformation Framework

A. The Structure of the Framework

The neural network model transformation framework has
the structure shown in Fig 2. What is expressed on the left side
of this figure are the transformation information containing the
on-device environment and user requirements, which are
expressed in YAML format.

In addition, this framework additionally receives a neural
network model trained with PyTorch and a weight data file.
The right part of the figure is the output result, which includes
the neural network model transformed and optimized for the
target on-device environments and the template codes to run
this model on the target.

Neural Network Transformation Manager provides an API
to receive neural network model and transformation
information from the user and controls the operation pipeline
of modules within the framework.

Model Optimizer is to optimize the neural network model.
It transforms the input PyTorch neural network model into
ONNX and quantizes the weight data according to the user's

1317

optimization request, thereby reducing the size of the weight
data and improving the execution speed. This module
basically uses the lightweight function provided by ONNX.
Optimization Lib. includes ONNX's library that executes
various algorithms for optimizing neural networks.

Model Transformer provides a function to transform the
ONNX neural network model to the target engine's neural
network model format. ONNX-to-target Lib. includes a
transformation library that transforms ONNX neural network
models into formats used by target inference engines.

The Template Code Generator automatically generates
codes of the pre-processing for input image and the post-
processing for output data after neural network inference, so
that the original neural network model can be executed on the
target on-device.

 The pre-processing for inputting the neural network
includes functions of transforming the format and size of the
input image to fit the neural network. The post-processing
includes functions of analyzing the output of the neural
network to extract ID of the recognized object, the location of
the object, and accuracy information. The Sample Code
DataBase includes example codes for executing neural
networks for each inference engine, a library of pre-processing
codes for neural network input, and a library of post-
processing codes for neural network output.

Fig. 3. Operation Flows in The Framework

B. Functional Tests of the Framework

To test the functions of this framework, a YAML file for
transformation information was created, and a neural network
model trained with PyTorch and a weight data file were
generated. In this test, YoloV5 was used for a neural network,
and the neural network was trained using the COCO
(Common Objects in Context) data sets. By inputting these
into this framework, the output shown in the figure below was
obtained, and the operation was confirmed by executing it on
the Jetson Nano device.

Fig. 4. Transformation Information File

…
Fig. 5. Parts of Generated Neural Network Execution Codes for TensorRT

Fig. 6. Run-time Screen Image of the Generated Codes

V. CONCLUDING REMARKS

In this paper, the implementation of a neural network
model transformation framework for on-device is described.
This framework receives information about models trained
with PyTorch, training data, and target on-device. This
framework transforms and optimizes the neural network
model so that the neural network model can operate on the
target with input received from the user, and generates
executable codes that can operate on the target engine and
operating system.

In the future, this framework will have deployment
functions for the other on-devices, cloud systems, etc. In
addition, it will be expanded to a neural network development
tool through linkage with the automatic neural network
generation framework or neural network training framework.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No. 2021-0-
00766, Development of Integrated Development Framework
that supports Automatic Neural Network Generation and
Deployment optimized for Runtime Environment)

REFERENCES

[1] https://www.pytorch.org

[2] https://www.tensorflow.org

[3] https://caffe.berkeleyvision.org

[4] https://onnx.ai

[5] Khronos Group, Neural Network Exchange Format, Version 1.0,
Khronos Group, October 2017.

[6] https://protocolbuf.dev

1318

