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Abstract—The strategy of training a new model through the
fine-tuning of pre-trained model has gained considerable promi-
nence due to its potential to reduce training costs or enhance
performance. However, accomplishing both of these objectives
concurrently presents a noteworthy challenge. To address the
challenge, this study adopts two entropy metrics, which can be
seamlessly integrated into the cross entropy loss. Our approach
aims at increasing representation entropy during pre-training
phase, leading to an increased information encoded in the
representation of a pre-trained model. This increased information
can then be effectively harnessed during subsequent fine-tuning
phase. In experiments, we substantiate the reliability of the two
adopted entropy metrics in accurately quantifying representation
entropy. Moreover, we demonstrate the effectiveness of the two
metrics in enhancing the performance of fine-tuning, particularly
in low data regime.

Index Terms—Fine-Tuning, Pre-Trained Model, Low Data
Regime, Shannon Entropy, Von Neumann Entropy

I. INTRODUCTION

Since the introduction of large pre-trained models in deep
learning, such as CLIP [8] and LLaMA [9], the strategy
of training a new model by fine-tuning a pre-trained model
has gained significant traction in recent studies, attributed
to its ability to reduce training costs or enhance perfor-
mance. However, the concurrent achievement of the dual goals
concerning cost reduction and performance enhancement is
challenging. This is because, in order to enhance performance,
it is necessary to fine-tune with a more extensive dataset,
which unavoidably leads to an increase in the training costs.

To address the challenge, this study adopts two entropy
metrics proposed in [2], denoted by HNCE(Z) and S(Cauto),
and employs them as representation regularization losses to
increase the information encoded in representation of a pre-
trained model. Specifically, we conjecture that by increasing
information encoded in the representation during pre-training
phase, the subsequent fine-tuning phase can effectively harness
the increased information, thereby leading to an enhanced
performance under conditions of very limited data availability,
referred to as the term low data regime.

*Equal contribution.

In experiments, we first substantiate the reliability of the
two entropy metrics in accurately quantifying the true entropy
values of representations, with S(Cauto) being more effective
metric. To evaluate fine-tuning in low data regime, we initiate
our evaluation by pre-training models, with and without the
incorporation of the entropy regularizations. Subsequently,
fine-tuning is conducted on the pre-trained models. The re-
sults demonstrate that our methods significantly improves the
performance of fine-tuning, particularly in low data regime,
with S(Cauto) being more effective regularizer.

II. PRELIMINARIES ON TWO ENTROPY METRICS

Quantifying entropy in high-dimensional vector spaces has
been recognized as a challenging problem [3]. To address the
challenge, we adopt two entropy metrics proposed in [2]. The
first metric quantifies the Shannon entropy, whereas the second
metric quantifies the von Neumann entropy.

A. HNCE(Z): A Metric for Quantifying Shannon Entropy

In this section, we summarize the details of the Shannon
self-information proposed in [2], which quantifies the Shannon
entropy of deep representations, denoted by HNCE(Z). This
metric utilizes the well-known lower bound mutual informa-
tion (MI) estimator, InfoNCE, which is generally known as a
low variance and bias estimator for large sample sizes [5], [7].

Given two random variables V1 and V2, the definition of
InfoNCE is formulated as follows:

I(V1;V2) ≥ logN + E

[
log

eh(v1,i,v2,i)

∑N
j=1 e

h(v1,i,v2,j)

]

≜ INCE(V1;V2),

(1)

where N denotes the sample size, (v1,i,v2,i) are sampled from
the joint distribution p(V1,V2), and v2,j are sampled from the
marginal distribution p(V2). h(·, ·) is a critic parameterized
by neural networks [7]. Notably, INCE(V1;V2) = logN −
LNCE , where LNCE = −E

[
log eh(v1,i,v2,i)∑N

j=1 eh(v1,i,v2,j)

]
represents

the widely used contrastive loss [5] in machine learning.
To quantify the Shannon entropy of a representation matrix

Z (= [z1, z2, ...,zN ]T ), HNCE(Z) utilizes the following
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property of self-information, where the mutual information of
a random variable with itself is the entropy of the random
variable [1].

H(Z) = I(Z;Z). (2)

Based on Eq. 1 and Eq. 2, a variational entropy estimator,
which is denoted by HNCE(Z), can be defined as below:

H(Z) = I(Z;Z) ≥ INCE(Z;Z) ≜ HNCE(Z). (3)

B. S(Cauto): A Metric for Quantifying Von Neumann Entropy

In this section, we summarize another entropy metric pro-
posed in [2], which quantifies the von Neumann entropy of
deep representations, denoted by S(Cauto).

To quantify the von Neumann entropy of a representation
matrix Z (= [z1, z2, ...,zN ]T ), the autocorrelation matrix of
deep representation Z, which is denoted by Cauto, needs to be
defined as below:

Cauto ≜
N∑
i=1

1

N
hih

T
i , (4)

where hi ≜ zi/∥zi∥2. Note that tr(Cauto) = 1 and Cauto ≥ 0.
Then, S(Cauto) can be computed using the eigenvalues λj

of the autocorrelation matrix Cauto as follows:

S(Cauto) ≜ −
∑
j

λj log λj . (5)

In quantum information theory [4], von Neumann entropy
has been proven as a lower bound for Shannon entropy, which
is formulated below:

H(Z) ≥ S(Cauto). (6)

III. EXPERIMENTS

While the efficacy of HNCE(Z) and S(Cauto) as rep-
resentation regularizers has been substantiated for various
tasks, including domain generalization, meta-learning, self-
supervised learning, and GAN, by previous work [2], their
reliability in quantifying representation entropy has not been
probed. Additionally, their effectiveness in enhancing fine-
tuning performance has not yet been examined.

A. Reliability in Quantifying Representation Entropy

To investigate the reliability of the two entropy metrics
in quantifying the representation entropy, we conduct experi-
ments where the true entropy values are known.

To generate representation with known entropy values, we
train ResNet-18 models until training loss converges toward
zero. In this case, by neural collapse phenomenon [6], within-
class variability of last-layer training representation collapses
to zero and the individual representations collapse to their
class-mean vectors. Consequently, the entropy of the repre-
sentation can be computed using the following formula:

H(Z) =

K∑
c=1

−pc log pc, (7)

Fig. 1: Effectiveness of the two entropy metrics in quantifying
representation entropy. ResNet-18 models are trained with a
subset of various sizes of classes in CIFAR-100 and until
training loss converges to zero. Both HNCE(Z) and S(Cauto)
values are computed for the penultimate representation.

where pc represents the proportion of class c within the data
distribution encompassing K classes. It is important to note
that when the representation matrix Z is generated from a
dataset with uniformly distributed classes, the entropy H(Z)
becomes equal to log(K).

In Fig. 1, the computed values of HNCE(Z) and S(Cauto)
for the representation matrix Z are shown alongside the true
entropy values computed using Eq. 7. The results present that
both HNCE(Z) and S(Cauto) consistently underestimate their
respective true entropy values, aligning with the theoretical
bounds outlined in Eq. 3 and Eq. 6, respectively. Furthermore,
the findings suggest that S(Cauto) potentially serves as a more
accurate estimator compared to HNCE(Z), as it demonstrates
a closer alignment with the true entropy values (with respective
average biases of 1.32 nats for HNCE(Z) and 0.37 nats for
S(Cauto)).

B. Impact of Increasing Representation Entropy During Pre-
Training Phase on the Performance of Fine-Tuning In Low
Data Regime

To investigate the impact of increasing representation en-
tropy during pre-training phase on the performance of fine-
tuning in low data regime, a comprehensive analysis is con-
ducted. This analysis involves the division of both the CIFAR-
100 and ImageNet-100 datasets into two distinct subsets,
where the first 25 classes are utilized for pre-training, and
the last 75 classes are utilized for fine-tuning.

During pre-training phase, ResNet-18 models are trained
from scratch using a subset of the first 25 classes. Within this
context, three distinct loss functions are taken into account.
As a baseline, the LCrossEntropy loss is employed. In order
to increase the representation entropy, auxiliary losses in the
form of HNCE(Z) or S(Cauto) are incorporated, with their
formulations given by:
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TABLE I: Impact of increasing representation entropy on the
performance of the pre-trained models. ResNet-18 models are
pre-trained by three different losses with a subset of the first
25 classes in CIFAR-100 and ImageNet-100.

Pre-train loss CIFAR-100 ImageNet-100

LCrossEntropy 88.36 87.36

LShannon 86.96 87.52

Diff. -1.40 0.16

LvonNeumann 88.32 88.08

Diff. -0.04 0.72

LShannon = LCrossEntropy − γShannon ·HNCE(Z), (8)
LvonNeumann = LCrossEntropy − γvonNeumann · S(Cauto), (9)

where γShannon and γvonNeumann represent regularization coef-
ficients, and Z denotes a penultimate representation.

The performance evaluation of the pre-trained models,
conducted prior to the fine-tuning phase, is presented in
Table I. Compared to the baseline performance achieved with
LCrossEntropy, the results for LShannon exhibit a marginal decline
of -0.62% on average. Conversely, the results for LvonNeumann

demonstrate a subtle enhancement, with an average of +0.34%.
During fine-tuning phase, we employ the pre-trained models

and reinitialize the last classification layer to accommodate
75 classes. Subsequently, fine-tuning is conducted across all
models, utilizing the LCrossEntropy loss function within the
context of low data regime. Specifically, we undertake this
process by utilizing randomly sampled subsets comprising
100%, 10%, and 1% of examples. The performance evaluation
of the fine-tuned models is presented in Table II.

Primarily, the results highlight that increasing represen-
tation entropy demonstrates greater efficacy for fine-tuning,
particularly in low data regime. This trend is substantiated by
the observation that the difference in performance, compared
to the baseline, increases as less examples are utilized for
fine-tuning. Specifically, the average improvements for the
utilization of 1% of examples yield 4.23% for CIFAR-100 and
5.51% for ImageNet-100, whereas the corresponding average
improvements for the utilization of 100% of examples yield
2.27% for CIFAR-100 and 0.92% for ImageNet-100.

Additionally, it is noteworthy that the application of
LvonNeumann during the pre-training phase consistently yields
superior performance compared to the use of LShannon. This
observation indeed concurs with the findings presented in [2],
where the efficacy of regularizing S(Cauto) outperforms that of
regularizing HNCE(Z) in the domain generalization tasks.

IV. CONCLUSION

In this study, we adopt two entropy metrics proposed
in [2], denoted by HNCE(Z) and S(Cauto). Our experiments
substantiate the efficacy of both metrics in not only quantifying
representation entropy but also in enhancing the performance
of fine-tuning, particularly in low data regime.

TABLE II: Impact of increasing representation entropy during
pre-traing phase on the performance of the fine-tuned models
in low data regime. The models pre-trained by three different
losses are fine-tuned by a cross-entropy loss with randomly
sampled 100%, 10%, and 1% of examples.

Pre-train loss CIFAR-100 ImageNet-100

100% 10% 1% 100% 10% 1%

LCrossEntropy 70.21 42.80 19.72 78.27 56.00 30.02

LShannon 71.56 45.91 23.87 78.57 58.51 34.79

Diff. 1.35 3.11 4.15 0.31 2.51 4.77

LvonNeumann 73.40 46.60 24.03 79.80 62.17 36.27

Diff. 3.19 3.80 4.31 1.53 6.17 6.25

Avg. Diff. 2.27 3.45 4.23 0.92 4.34 5.51
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