
Exploring Uncertainty-aware Class-wise Thresholds
for Recognition Model’s Uncertainty Detection

1st Jihyun Hwang
School of Electronics and Telecommunications Research Institute

University of Science and Technology

Daejeon, Republic of Korea
aribae@etri.re.kr

2nd* Minsu Jang
Social Robotics Research Section

Electronics and Telecommunications Research Institute

Daejeon, Republic of Korea
minsu@etri.re.kr

Abstract—This study addresses the current limitations in ar-

tificial intelligence models, specifically their ability to accurately

predict uncertainty, a crucial aspect for improving trustwor-

thiness and safety. We introduce a technique for estimating

uncertainty in zero-shot image classification using the vision-

language model, CLIP. The standard method for quantifying

uncertainty in classification models is to measure the entropy

from normalized output value, which is then compared to

a predetermined threshold to ascertain the certainty of the

model’s output. We propose a method for adapting this approach

for vision-language model-based zero-shot image classification

to enhance uncertainty prediction through class-wise entropy

thresholding. Experimental results reveal that class-wise entropy

thresholding surpasses the previous approach. Additionally, it is

demonstrated that our approach is successful for detecting out-

of-distribution instances.

Index Terms—classification, uncertainty, out-of-distribution,

cosine-similarity

I. INTRODUCTION

Existing artificial intelligence technologies do not have the
ability to distinguish between what they know and what
they do not know, so they do not have flexibility in various
unlearned situations, and cannot grow on their own because
they cannot judge the uncertainty of knowledge. If artificial
intelligence is aware of the uncertainty of knowledge and can
grow and learn knowledge by resolving uncertainties, it will
be able to respond flexibly to situations that have not been
learned. To this end, when artificial intelligence encounters
Out-Of-Distribution(OOD)[7] information, there is a need for
a method to determine its own inference uncertainty.

The vision-language model is developing into a key tech-
nology used in a variety of applications in the field of con-
temporary computer vision. Through the relationship between
images and text, these models are capable of carrying out a
variety of tasks like image classification, search, and creation.
Particularly non-language models, which set themselves apart
from conventional models and perform well, include Con-
trastive Language-Image Pretraining (CLIP). Firstly, the CLIP
is a versatile model. Models for object or image recognition
that are currently in use were created with a specific task in
mind. On the other hand, by comprehending and articulating
the relationship between images and text, CLIP can perform
well in a variety of domains. It also has the integration of

language and vision. By combining the learning of image and
text data, this model can comprehend the semantic relationship
between an image and a text. This enables the model to catego-
rize or retrieve images using the image’s textual descriptions.
The model can recognize and categorize novel objects that
are not understood by using textual information in an open-
world environment where unknown classes or objects appear
through the integration of vision and language [1]. As a result,
we want to take advantage of CLIP’s multi-purpose model
and vision-language integration capabilities to deal with the
zero-shot classification problem. Traditional approaches set
thresholds to measure uncertainty using confidence values.
However, such confidence-based approaches could differ from
the characteristics of the model since CLIP measures similarity
by taking advantage of the distinction between images and
text. Therefore, by resetting thresholds in CLIP to take into
account distance-based similarity measurements, we would
like to provide a method for measuring uncertainty that is
more appropriate for zero-shot classification problems.

II. APPROACH

A. Uncertainty-aware CLIP based zero-shot image classifica-

tion

The interaction between images and text enhances classi-
fication performance, and the CLIP model excels in solving
image classification problems. Studies have reported that CLIP
achieves high performance in image classification tasks, even
under zero-shot conditions. To carry out classification using
CLIP, a set of textual prompts is needed, each corresponding to
a specific class. To classify an input image img, the initial step
involves calculating Eimg , the image embedding for the input
image, and Etext(j), the textual embedding for each prompt
j. Subsequently, the cosine similarity sj between Eimg and
Etext(j) for j = 1, 2, . . . ,K is determined using equation 1
and is normalized by 2 to get the final similarity score simj .
Finally, the image is classified by selecting the prompt that has
the highest similarity and identifying the corresponding class.

sj =
Eimg · Etext(j)

kEimgk ⇥ kEtext(j)k
(1)

simj =
sj + 1

2
for j = 1, 2, . . . ,K (2)
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In the context of zero-shot image classification, the un-
certainty of the classification is estimated by calculating the
entropy of the distribution of similarities between the input
image and the prompts. The uncertainty is directly proportional
to this entropy: as the entropy increases, so does the uncer-
tainty in the classification. The entropy is computed using the
equation 3, where img indicates a given image.

H(img) = −
KX

j=1

simj log simj (3)

B. Class-wise entropy thresholds method

The confidence thresholding technique measures the uncer-
tainty of a classification model by asserting that a prediction
is uncertain if the entropy of the output predictions exceeds
a predetermined entropy threshold [10]. Generally, a single
entropy threshold is applied even in multi-class classification
scenarios. However, this approach has a limitation: it fails to
account for the variability in prediction probabilities across
different classes.

To mitigate this limitation, we propose to establish distinct
entropy threshold values, thc, for each class. These thresholds
are optimized according to the entropy distribution specific to
each class. In zero-shot classification scenarios using CLIP,
the uncertainty of a classification is evaluated by comparing
H(img) to thc for a given class c, where simc is the
highest similarity score. A classification is deemed uncertain
if H(img) surpasses thc. This complete procedure is depicted
in Figure 1.

Our approach not only provides the model with the flexibil-
ity to handle challenging classes, but it also enhances overall
classification accuracy, outperforming the results obtained with
a single universal threshold. Hence, in this paper, we introduce
a method for assessing classification result uncertainty while
also establishing independent entropy thresholds for each
class.

C. Grid search

We applied the grid search method to determine class-wise
entropy thresholds. The most optimal parameter combination
is chosen by methodically examining all possible parameter
combinations, which is one of the numerous classic methods
for optimization. Grid search has the benefit of exploring
every possibility by evaluating every combination within a
specified range. This enables us to determine the ideal hy-
perparameter values for enhancing the model’s functionality.
We systematically assess each combination’s impact on the
model’s performance while taking the interaction between
various hyperparameters into account. The performance and
generalizability of the model are improved by determining
the most optimal combination while taking into consideration
all other possible combinations. By utilizing the grid search
approach, we have determined optimal threshold values for
each class. In this process, we extracted and analyzed a list
of entropies calculated for all samples within each class.
Entropy list quantifies the level of uncertainty associated with

Fig. 1. Class-wise entropy thresholding method architecture. k is index of
top-1 cosine similarity

each sample. Specifically, from this list, we identified the
entropy value that minimizes both the count of correctly
classified samples exhibiting uncertain characteristics and the
count of incorrectly classified samples lacking uncertainty.
This entropy value was then chosen as the threshold to assess
the uncertainty of the recognition model’s classification results
for each class. This approach is illustrated in Algorithm 1.

Algorithm 1 Grid search method for fine class-wise entropy
thresholds

The results of the uncertainty judgment in III-B and III-C
were analyzed using three thresholds. The three thresholds
are grid search class-wise thresholds obtained through Algo-
rithm 1 , their average value, mean of class-wise thresholds

single threshold, and grid search single threshold obtained
by applying Algorithm 1 to the prediction results of the CLIP
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model for the entire dataset. Regarding this, entropy values
derived from train data were set as the entropy samples. This
allowed for the measurement of the model’s classification
result’s uncertainty and the use of the data to determine
the optimal threshold value. The determined thresholds were
evaluated using the test dataset. The determined thresholds
were evaluated using the test dataset.

III. EXPERIMENTS AND RESULTS

A. Datasets

In this experiment, experiments were conducted using four
different datasets. Through this, we evaluated the performance
of a recognition model and introduced class-wise entropy
thresholds to determine uncertainty, and sought ways to further
improve uncertainty detection performance by utilizing it.
We used two datasets (CIFAR10[3] and Food101[4]) showed
better performance of the CLIP model compared to the
existing pre-trained ResNet50 model and the CLIP model
as a result of the CLIP paper, and two standard Zero-Shot
Classification(ZSC) datasets (Stanford Dogs[5] and Caltech-
UCSD Birds-200-2011[6]).

TABLE I
THE STATISTICS OF THE TWO DATASETS USED

Dataset

CIFAR10 Food101

# of classes 10 101
# of images 6000 101000

The number of images and classes for each dataset is shown
in Table I, and Table II shows the performance of the CLIP
model for each dataset. The classification result was derived
by applying the CLIP model to each dataset. When the dataset
was split into train and test, the matching distinction was
preserved, but when it wasn’t, the data was split into train
and test in an 8:2 ratio.

TABLE II
CLIP MODEL ACCURACY

Dataset

CIFAR10 Food101

# of images 6000 101000
# of correct predictions 7926 12434

# of incorrect predictions 2074 7766
Accuracy(%) 79.206 61.554

B. Class-wise entropy thresholding test

A comparative analysis was conducted to evaluate the
efficacy of the three threshold values that were obtained. The
aim was to evaluate the possibility for applying the uncertainty
threshold to reveal instances of uncertainty within the subset
of instances where the model failed to correctly classify.
The purpose of this comparison was to demonstrate how
effectively the newly introduced uncertainty threshold could
detect ambiguous predictions (Table III).

TABLE III
UNCERTAINTY PREDICTION PERFORMANCE

Dataset

CIFAR10 Food101

class-wise thresholds 0.779 0.845

mean of class-wise thresholds single threshold 0.456 0.367
grid search single threshold 0.529 0.576

Fig 2 is a visualization of the results. As a result of the
analysis, the proportion of the case where class-wise entropy
thresholding was applied was higher than that of the case
where the model was classified as incorrect (a graph of Fig
2).

(a) Uncertain imcorrect classification (↑)

(b) Uncertain correct classification (↓)

Fig. 2. Uncertainty detection performance

C. OOD dataset test

Further experimental analysis was performed to verify the
effectiveness of threshold setting on the problem of not
addressing classification on out-of-distribution(OOD) images
not given at the prompt, which is a limitation of the CLIP
model mentioned in this work. In-Distribution(ID) and OOD
were excluded from the prompt by designating 20% of the
same class as OOD in the train and test datasets, respectively,
and then calculating the prediction results of the CLIP model
to obtain thresholds and compare the results of applying
them(Table IV).

The results of OOD (Fig 3) confirmed that class-wise
entropy thresholds showed the highest performance. Based on
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TABLE IV
UNCERTAINTY PREDICTION PERFORMANCE IN OOD DATASETS

Dataset

CIFAR10 Food101

class-wise thresholds 0.779 0.845

mean of class-wise thresholds single threshold 0.456 0.367
grid search single threshold 0.529 0.576

TABLE V
UNCERTAINTY PREDICTION ACCURACY(F1-SCORE)

dataset
Class-wise entropy thresholding test OOD dataset test

CLIP Our CLIP Our

CIFAR10 0.796 0.956 0.671 0.956

Food101 0.607 1 0.516 1

these results, it is judged that the possibility of use can be
increased by supplementing the uncertainty detection perfor-
mance of recognition models through the class-wise entropy
thresholding method.

Fig. 3. Uncertainty detection performance in OOD datasets (↑)

Our class-wise entropy thresholding method we applied
showed the effect of actually seeing the improvement of
the accuracy of the model. Below are example images of
determining uncertainty through the method (Fig 4), and Table
V shows how the F1 score improved in each part. If the
model’s prediction results were deemed uncertain, the correct
labeling was given, and the results showed an improvement in
accuracy across all datasets.

IV. DISCUSSIONS

Our class-wise entropy thresholding method, the method
used in this study, shows higher performance as a result
of synthesizing the entire set of results. This leads to the
conclusion that the application of threshold values for each
class has a beneficial impact on the model’s performance
improvement. However, it becomes apparent that there is a
significant bias in the basic characteristics of the images as
one delves deeper into the details of ZSC datasets. The CLIP
model’s classification performance noticeably declines as a
result of this bias. The expected improvement remained elusive
despite efforts to reduce this bias by using a threshold, and the

Fig. 4. Uncertainty detection example images

resulting uncertainty measurements failed to reach the desired
level of significance. As a result, due to their potential to
reduce the reliability of the model, it becomes essential to take
a cautious and meticulous approach when navigating the land-
scape of these datasets. Thus, it is key to set out on a research
adventure in search of methods to simultaneously improve
the model’s functionality and the dependability of the class-
wise entropy thresholding approach. It is expected that these
studies will not only contribute to a broader understanding
of dataset utilization within machine learning models but will
also provide invaluable guidelines to uphold and ensure the
unwavering reliability of the resulting models by addressing
and supplementing the prevailing bias within the ZSC dataset
through focused future research endeavors.

V. CONCLUSION

In this paper, we studied how to improve the model’s
uncertainty detection performance by applying class-wise en-
tropy thresholds to classification problems using a recognition
model. Experiments demonstrate that more robust classifica-
tion performance can be achieved by introducing class-wise
entropy thresholds to measure the uncertainty of the model’s
prediction results. Through this method, it was confirmed that
improved classification performance can be obtained even in
uncertain cases. Based on these results, it is expected that
our method can contribute to increasing the likelihood of safe
and reliable applications in real-world applications by helping
to increase the reliability of artificial intelligence models. In
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addition, thanks to the nature of the CLIP model, which
allows users to easily add new classes using prompts without
additional learning, it seems that it can be effectively applied
to active learning problems in the future. Through this, it
seems that high performance can be achieved at a low labeling
cost[8].
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