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Abstract—One of major issues in training deep neural network
for image super resolution is checkerboard artifact. It degrades
the quality and resolution of output images. It usually appears
at diagonal edges and curved edges of input images. It can
also occur when too much information is compressed and lost
during encoding process. To address this issues, we propose U-
Net based structure with its decoder reinforced with attention
modules for image super resolution task. U-Net structure is
used to increase the feature reusability and reduce the loss of
information during the encoding process. Attention modules are
implemented in decoding layers in order to enhance the capability
to produce high resolution output at diagonal edges and curved
edges. Our proposed method shows improvements in PSNR and
SSIM compared to the existing methods.

Index Terms—Image Super Resolution, Deep Neural Networks,
Image Attention

I. INTRODUCTION

Image Super Resolution (SR) is the task of converting a low
resolution image into a high resolution image. In recent years,
deep learning-based methods have been widely researched for
Single Image Super Resolution (SISR). Deep Neural Network
(DNN) has shown strong capability to extract and utilize
features for enhancing image resolution. DNN for SR task uses
encoder-decoder structure. Layers of Convolutional Neural
Network (CNN) are used as encoders to extract features
from Low Resolution (LR) images and organize them in
latent feature vectors. Layers of transposed CNN are used as
decoders to produce High Resolution (HR) output images from
the compressed information in latent feature vectors.

Checkerboard artifact is one of the greatest obstacles in
training DNN for SISR. It is a phenomenon that grid-like noise
patterns appear in the output image. It degrades the quality and
resolution of SR output. Fig 1 shows the case of checkerboard
artifacts [1]. Heavy checkerboard artifacts in upper image of
Fig 1 do not only degrade the resolution of the image, but also
alter the image by inserting visible noise patterns.

When training the network with CNN and transposed CNN
layers for SR task, checkerboard artifacts strongly appear at
diagonal edges and curved edges in the image. This is because
kernels in transposed CNN move only in straight horizontal
and vertical directions. It has structural limitations in handling
diagonal edges and curved edges. In addition, deeper the net-
work becomes at the encoder side, stronger the checkerboard
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Fig. 1. Checkerboard Artifacts

artifacts appear. Increase in the number of CNN layers at the
encoder compresses the input data into smaller latent feature
vectors. Too much compression by encoder can result in the
loss of feature information. As a result, decoder will struggle in
producing HR images with less information, which can result
into checkerboard artifacts. Considering these limitations of
CNN-based layers, the network needs to be granted with more
flexibility in extracting features and expanding them into HR
output. Also, it needs feature reusability to minimize the loss
of information during encoding process.

Attention mechanism is one of the recent advancements in
deep learning, derived from natural language processing tasks.
It is designed to overcome the limitations of encoder-decoder
structure by building thorough connections between input and
output vectors. In image-based tasks, attention mechanism
makes DNN to focus on the important regions of an image and
manipulate context information for its intended tasks. Without
strict constraints in kernel shape or computation direction,
attention mechanism is more flexible in detecting which area
of image requires more focus for fine-tuning the output.

In order to overcome the limitations of CNN-based encoder-
decoder structure and minimize checkerboard artifacts, we pro-
pose U-Net structure with its decoder reinforced with attention
modules for SR task. We apply attention at the decoder using
Efficient Channel Attention Network (ECA-Net) proposed by
Wang et al [2]. ECA captures local cross channel interaction by
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considering every channel and neighbors. It can improve pixel
reconstruction by collecting global information and improving
representation ability for latent vector in the decoder. U-Net
structure with channel attention at the decoder can increase the
overall feature reusability for producing high resolution output
[3]. In addition, we attach Contextual Reasoning Attention
Network (CRAN) between encoder and decoder to refine
the latent vector [4]. Our network is trained and tested with
DIV2K Dataset [5] [6].

Our contributions as follows:

e We overcome the structural limitations of transposed
CNN at the decoder by reinforcing the decoder’s capa-
bility to produce high resolution output through the use
of ECA-Net.

o We utilize U-Net structure with channel attention for fea-
ture reusability across the entire network. Residual con-
nections of U-Net are integrated at the decoder through
channel attention. Its end-to-end structure can provide
good use of context information while preveting gradient
vanishing and improving convergence during training.

e We apply CRAN between the encoder and decoder.
Latent feature vectors from the encoder can be refined
by CRAN before being processed by the decoder.

II. RELATED WORKS

A. Image Super Resolution

Classical image super resolution methods, such as bicubic
interpolation and Lanczos resampling, utilize unique pre-
defined mathematical calculations. Recent methods have fo-
cused on deep learning-based approaches.

Dong et al. proposed Super Resolution Convolutional Neu-
ral Network (SRCNN) for SR task [7]. Increasing the depth of
DNN can enhance the network’s feature extraction capability
and its performance. However, the network with deep structure
often fails to reach convergence, because with more layers, it
has to struggle with training more weights. Residual learning
allows the neural network with deeper structures to cope with
gradient vanishing and degradation through feature reusability.
With the help of residual learning, Kim et al. proposed Very
Deep Super Resolution (VDSR) [8]. Lim et al proposed
the removal of batch normalization layer since it cannot
improve the model performance while consuming memory and
restricting the network’s flexibility with normalization process
[9]. Goodfellow et al. introduced the Generative Adversarial
Networks (GAN), which has been used in various image-
based tasks, such as style transfer and image generation [10].
Inspired by GAN, Ledig et al. proposed Super Resolution
Generative Adversarial Network (SRGAN) [11]. While its
generator is trained to produce HR output from LR input,
its discriminator is trained to determine whether the output
is the generator’s HR output or its HR groundtruth. Leig et al
also proposed perceptual loss in order to cope with ill-posed
problem of SR task [11].

B. Image Attention

Image attention is mainly used for feature map selection
using multi-modal relationship tasks, such as Visual Question
Answering or Image Captioning [12] [13]. Attention can
be viewed as a dynamic feature map selection according
to the input. Hu et al. proposed a squeeze-and-excitation
networks (SENet), which is used to collect global information,
capture channel-wise relationships, and improve representa-
tion ability [14]. SENet reduces the number of channels to
avoid high model complexity. However, it fails to directly
model correspondence between weight and inputs, reducing
the quality of results. In order to overcome this drawback,
Wang et al. proposed ECA-Net [2]. Instead of dimensionality
reduction, it uses a 1D convolution to determine the interaction
between channels. Zhang el al. proposes Context Reasoning
Attention Network (CRAN) for SR task. [4]. They point out
that although CNN is effective in extracting local features, it
lacks the capability to set up global context for its intended
task. By integrating attention mechanism into convolution
process, it achieves exceptional quantitative and qualitative SR
performance.

III. PROPOSED METHODS

Proposed method focuses on enhancing the decoder of
CNN-based SR network with U-Net structure and image
attention. Fig 2 shows the network structure of the proposed
method. Although CNN in the encoder is effective in extract-
ing local features and organizing them as the latent feature
vectors, transposed CNN in the decoder lacks the capability
in processing diagonal edges and curved edges for producing
SR output. Since the decoder is responsible for generating SR
output from latent representation, its performance determines
the quality of SR output image. It needs to be more flexible
in processing diagonal edges and curved edges in order to
prevent checkerboard artifacts.

We use U-Net structure in order to grant the network
with feature reusability through residual connections between
encoders and decoders of corresponding levels [3]. We inte-
grate residual connections from the encoder into the decoder
using channel attention. These connections can minimize loss
of information during the encoding process by allowing the
decoder to fully utilize latent representation across the entire
network path. This can prevent gradient vanishing and improve
the network’s convergence during the training process.

In order to reinforce the decoder’s SR capability with atten-
tion, we propose the use of ECA-Net between decoding layers.
ECA block has similar function to an SE block. Instead of
indirect correspondence, an ECA block only considers direct
interaction between each channel and its k-nearest neighbors
to control model complexity. This process is described in
Equation 1 and 2:

s = Feca(z,0) = 0(ConvlD(GAP(X))) (1)

Y =sX 2
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Fig. 2. Structure of Proposed Method with Attention Module

ConvlD (-) denotes 1D convolution with a kernel across
the channel domain, which models local cross-channel in-
teraction. Compared to SENet, ECA-Net has an improved
excitation module.

We apply CRAN for smoother learned information between
encoder and decoder. CRAN follows the network design of
RCAN [4] [15]. It is composed of Context Reasoning At-
tention Convolution (CRAC) and Context Residual Attention
Block (CRAB) for SR task. The equation of super-resolved
output Igp is described as Equation 3. Feopran (+) denotes
the function of CRAN.

Isp = Focran(ILR) 3)

We use the combination of two different losses as loss
function to train our proposed network. First, the L1 loss is
designed to minimize the difference in intensity of pixels and
is defined as Equation 4. Iy denotes the high-resolution
image. Igr denotes the super-resolution image as output.
However, this loss is not enough to handle multi-modal nature
of SR task.

Ly = |Igr — Isg] €]

Second, the perceptual loss is used to conserve style and
context [16]. It is defined as Equation 5. First four layers in
the encoder of Fig 2 are from pre-trained VGG16 network.
This loss can compare high level differences and catch the
details of images.

Lpere = Y [VGG(Ingr) = VGG(Isk)layer (5

layer

As described in Equation 6, loss function for our propose
method is the weighted sum of L1 loss and perceptual loss.

Lfinal =ax L+ 6 * Lperc (6)
IV. EXPERIMENT RESULTS
A. Training Setup

We trained our proposed network from Section 3 with
DIV2k dataset on SR factor x4 [5] [6]. We implemented the

network using PyTorch. It is trained on Nvidia Tesla T4 by
Adam optimizer with learning learning late =le™%, 5;=0.9,
$3=0.999, and e=le~8. Loss function from Equation 6 is set
with « = 0.8, 5 =0.2.

B. Results

1) Quantitative Evaluation: To evaluate the proposed meth-
ods, we use two evaluation metrics, PSNR and SSIM. We
compared its performance with bilinear interpolation, CNN-
only U-Net, and SRCNN. Table I shows that our proposed
method achieves higher PSNR and SSIM. CNN-only U-Net
achieves higher PSNR ans SSIM with feature reusabiltiy
through residual connections. Based on the residual connec-
tions of U-Net, our proposed method reaches higher PSNR and
SSIM by reinforcing the decoder with ECA-Net and refining
latent feature vectors from the encoder with CRAN.

TABLE 1
QUANTITATIVE RESULT COMPARISON

Method Scale | PSNR | SSIM

Bilinear Interpolation x4 28.871 | 0.671

CNN-only U-Net x4 30.675 | 0.824

SRCNN x4 29.540 | 0.732

Proposed Method x4 31.452 | 0.876

2) Qualitive Results: Fig 3 shows qualitative comparison
of SR images produced by our proposed method and existing
methods. From Table I, although CNN-only U-Net reaches
higher PSNR and SSIM than SRCNN, its output images show
signs of jitter noises. Also, compared to HR groundtruth and
SRCNN outputs, its outputs show signs of blurriness at the
regions of extreme details. This indicates CNN-based lay-
ers, especially transposed CNN, have limitations in handling
details of HR images. While our proposed method reachers
higher PSNR and SSIM than both CNN-only U-Net and
SRCNN, it successfully produces SR images with strong
details. Reinforcing decoder with attention modules provides
more flexibility for the decoder to process various types of
edges and details for SR task. This leads to improvements in
both evaluation metrics and SR output quality.
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Fig. 3. Qualitative Result Comparison

V. CONCLUSION

This paper presents the use of attention mechanism in the
decoder of SR network to improve SR image generation per-
formance. It points out that structural limitations of transposed
CNN at the decoder lead to checkerboard artifacts that degrade
the quality and resolution of SR output images. In order to
reinforce the decoder’s image generation capability, we apply
U-Net with channel attention for feature reusability, ECA-Net
between decoding layers for more flexible feature processing,
and CRAN between encoder and decoder for refining the
encoder’s latent feature vectors. Our proposed method achieves
higher PSNR and SSIM than some of existing methods. It also
produces SR image output with strong details. Reinforcing the
decoder with attention modules accomplishes improvements
in both evaluation metrics and SR output quality by allowing
more flexibility in handling various edges and details at the
decoder of SR network.

Our proposed method can provide post-processing filter that
can enhance details of targets and backgrounds in LR input
image. It can be used in the fields that requires resolution en-
hancements, such as video surveillance and satellite imagery.
Our proposed method needs to be further optimized in its
computation time and memory usage in order to operate a
real-time filter block.
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