
Deep Learning on MCUs: Comparative Analysis of
Compile and Interpreter based Execution Methods

Gunju Park∗ , Seungtae Hong∗† , Jeong-Si Kim∗
∗Artificial Intelligence Computing Research Lab.

Electronics and Telecommunications Research Institute, Deajeon, Republic of Korea
Emails : parkgj@etri.re.kr , sthong@etri.re.kr , sikim00@etri.re.kr

†University of Science and Technology, Daejeon, Korea
Emails : sthong@etri.re.kr

Abstract—With the rapid advancements in Edge Deep Learn-
ing research, the focus has shifted from optimizing on-device
deep learning inference on smartphones and mobile boards, like
Nvidia’s Jetson, to executing deep learning models on highly
constrained computational resources of a Micro Control Unit
(MCU). However, the limited operational resources of these MCU
devices pose significant challenges. The Flash ROM memory,
which contains the weights of deep learning models, is usually
around 1-2MB, while the SRAM memory, used for managing
runtime tensors, ranges approximately from 300kB to 1MB.
These constraints make conventional on-device inference tech-
niques challenging. This paper offers a comprehensive guide
for performing AI inference within the restricted computational
confines of an MCU and juxtaposes the efficiency of two runtime
methods for implementing deep learning models within the MCU:
the Compile-based method and the Interpreter-based method.

Index Terms—Edge AI, MCU, Lightweight CNN, TinyML

I. INTRODUCTION

The need for deep learning inference in various edge
industries such as autonomous driving, smart home, health-
care, augmented reality (AR), and robotics has been growing
recently [1]. The traditional Cloud-Edge method [2], which
requires network communication, has several limitations. It
cannot operate in environments without network availability,
and issues regarding privacy and the energy consumption
used for network communication in battery-based independent
power systems are significant.

To address these issues, many researches are being con-
ducted on on-device edge inference, which optimizes complex
deep learning model inference by utilizing only the computa-
tional resources within the device to save energy consumption.

However, Micro Control Units (MCUs) are used in modules
responsible for sensor processing in autonomous vehicles,
intelligent robots, and smart IoT modules in smart homes.
Compared to the Edge ML level equipped with traditional em-
bedded GPUs or NPUs, they possess significantly limited com-
putational resources. Thus, executing deep learning models on
MCUs presents considerable challenges. The methodology to
solve these problems is referred to as TinyML and is a subject
of active research [3].

This paper introduces the overall process for executing deep
learning models in the extremely constrained computational
environment of MCUs, and analyzes and compares intrepreter-
based and compile-based runtime inference approaches.

II. METHODS AND ANALYSIS

A. MCU-Based AI Model Inference: An Overview

In order to perform deep learning model computations
such as Convolution Neural Networks (CNNs), including
MobileNet, on a Micro Control Unit (MCU), the model must
first be trained and optimized at the host level before being
converted into a TFLite model format.

Several model optimization methods are available. First,
there is the Quantization technique [4]. The extremely limited
memory space of MCU’s SRAM (300KB - 1MB) and Flash
ROM (1-2MB) necessitates this step as using the standard
32-bit floating point tensors of conventional AI models would
exceed memory capacity. By applying Full Integer Quantiza-
tion to both the model weight tensors and the input/output
(activation) tensors, the required memory can be compressed
to a quarter of its original size. If the normalization of input
image data distribution is considered during Quantization,
preprocessing can be integrated into the scale factor of the
8-bit model, eliminating the need for a separate preprocessing
phase in the application layer.

Secondly, Pruning [5] sets less influential values in the Conv
Filter’s weights to zero or eliminates less significant channels
within the filter, achieving up to 80% sparsity. Techniques
such as Graph Fusion consolidate operations like Convolution,
Batch-normalization, and ReLU into a single operation, thus
reducing the number of necessary layers. Neural Architecture
Search (NAS) [6] can also be used to balance the memory
constraints of the MCU and high accuracy.

Post these optimizations, the model is converted to a TFLite
format, which requires a Runtime Backend for model inference
on the MCU. There are two primary types of runtime systems:
Interpreter-based, exemplified by Google’s open-source Ten-
sorflow Lite Micro (TFLM) [7], and Compile-based, which
includes the open-source like TinyEngine [6] from MIT’s
SongHanLab, micro-TVM from Apache. Once the runtime
setting has been established as either type 2-a or 2-b as per
Fig.1, An application is then deployed as firmware onto the
MCU.

After initializing the MCU device, the input data, which can
either be read from a JPEG compressed image file on an SD
card or obtained as raw image data from a camera module, is

1338979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

Fig. 1: MCU Inference system overview

decoded using a lightweight libJPEG and stored in unsigned
char array buffers. This array is then used as the model input.
When this array is used as the model input and the Runtime
functions for model execution are run, the system internally
performs computations using optimized low-level kernels for
each layer operation.

Finally, memory planning is utilized as illustrated in Fig.
1’s right-hand side. This involves mapping each tensor, used
for model inference, to the address of the SRAM buffer
memory, considering each tensor’s lifecycle or the points
required for inference operation. Through memory planning,
the Tensor memory space used for overall inference can be
reused, reducing the peak memory value.

B. Comparative Analysis : Interpreter-Based and Compile-
Based Methods

Fig. 2: Runtime execution flow diagrams

We compare the operational mechanisms of both runtimes
at the Host level and the Device level respectively. The tasks
performed at the Host level are those indicated as 2-a and 2-b
in Fig. 1.

1) Host - Interpreter method: Interpreter-based methods,
such as TFLM, perform simple tasks at the Host level, such as

basic parameter setting or dumping the model and data in Hex
format. They offer an API to set parameters like calculating the
appropriate Tensor Arena size based on the given model. Since
including all operations not contained in the model would
increase firmware size, parameters are set in the Ops Resolver
to include only necessary operations.

2) Host - Compile method: Compile-based methods like
TinyEngine perform a relatively large number of tasks at the
Host level. They write code for buffer (tensor) variables in
advance for Read-only data such as weights, biases, and scale
values based on parsed TFLite model data. At runtime, each
tensor’s address and size are determined in advance through
Memory Scheduling based on Activation tensor information.
They also select the optimal Kernel for each layer operation,
map it, and generate the corresponding operation function
code. Eventually, they generate the Invoke function that runs
the entire model. Typically, codes are generated in C language.

Next, we analyze the tasks performed at the Device level
(Fig.1’s No. 3 and Fig.2’s (a), (b)).

3) Device - Interpreter method: Interpreter methods carry
out most tasks at the Device level, from mapping the model to
usable data structure and building the interpreter to memory
planning within the given Tensor Arena size, and Operator-
Kernel mapping. These tasks are executed only once as an
initialization stage for AI inference, but a slight overhead
occurs at the Device. The actual model operation works
through the interaction of the built Interpreter and the Operator
API mapped to the Optimized Kernel, which perform the entire
model’s Invoke.

4) Device - Compile method: On the other hand, as most
of the tasks are completed at the Host level in the Compile
method, the Device firmware code simply calls the Invoke
function of the generated code. Therefore, AI inference can
be performed without any additional overhead at runtime.

III. EVALUATION

We set up the experimental environment on the
STM32F746G-Disco MCU board and performed experiments
based on the CNN models (Table. 1 - Imagenet, VWW)
from the MCUNet Model-zoo for performance measurement.

1339

net id MACs Params Top-1(int8)
mcunet-imagenet1 12.8M 0.64M 49.9%

mcunet-vww1 11.6M 0.43M 88.9%

TABLE I: MCUNet Networks Info

We conducted experiments using TinyEngine for the
compile-based approach and Tensorflow Lite Micro for the
interpreter-based approach.

Fig. 3: Memory usage on MCU

First, we explored the difference in memory allocation for
the tensors stored in the MCU device’s FLASH and SRAM
memory, based on the model-specific runtime methods. The
size of model parameters in the FLASH memory showed little
variation. However, the required SRAM memory space could
be reduced by more than half depending on the efficiency of
memory planning in each runtime algorithm.

Fig. 4: Model invoke latency comparison

Next, we examined model execution time. We found that the
latency of executing the Invoke operation for the entire model
was about twice as fast in both models, likely due to additional
optimizations by TinyEngine and potential suboptimal kernel
parameter settings during each operation in the interpreter-
based inference.

Lastly, we considered the latency during the setup stage
in the interpreter-based runtime. Despite the setup process
only occurring once, it may contribute a slight overhead when
AI inference is triggered on MCUs predominantly deployed
on sensors, affecting immediate inference performance. This

Fig. 5: Interpreter setup overhead on VWW model

overhead accounts for about 22% or 28ms of the VWW
inference execution time, with the planning and allocation
process being the most significant cause.

IV. CONCLUSION

In designing a model, the interpreter-based approach pro-
vides a suitable platform for efficient implementation and
model verification. However, considering the challenges as-
sociated with optimizing and maintaining a new model in
a compile-based environment, it is highly advantageous to
meticulously design the model via TFLM and subsequently
deploy using the compile-based method. Ultimately, a strategic
integration of the strengths inherent to both the interpreter-
based and compile-based methodologies can foster the devel-
opment of efficient, optimized, and easily maintainable mod-
els. This approach has the potential to significantly accelerate
advancements in machine learning applications

ACKNOWLEDGMENT

This research was supported by the Challengeable Future
Defense Technology Research and Development Program
through the Agency For Defense Development(ADD) funded
by the Defense Acquisition Program Administration(DAPA)
in 2022(No.915062201)

REFERENCES

[1] C. Lee, S. Hong, S. Hong, and T. Kim, “Performance analysis of local
exit for distributed deep neural networks over cloud and edge computing,”
ETRI Journal, vol. 42, pp. 658–668, 10 2020.

[2] S. Kim, T. Choi, S. Song, E. Strinati, and J.-M. Chung, “Special issue
on 5g b5g enabling edge computing, big data and deep learning
technologies,” ETRI Journal, vol. 42, pp. 639–642, 10 2020.

[3] A. N. Mazumder, J. Meng, H.-A. Rashid, U. Kallakuri, X. Zhang, J.-S.
Seo, and T. Mohsenin, “A survey on the optimization of neural network
accelerators for micro-ai on-device inference,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 11, no. 4, pp. 532–547,
2021.

[4] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network inference,”
arXiv preprint arXiv:2103.13630, 2021.

[5] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?” Proceedings of machine learning and
systems, vol. 2, pp. 129–146, 2020.

[6] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Mcunetv2: Memory-
efficient patch-based inference for tiny deep learning,” in Annual Confer-
ence on Neural Information Processing Systems (NeurIPS), 2021.

[7] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, pp. 800–811, 2021.

1340

