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Abstract— This paper introduces a novel methodology to 
enhance the prediction of new events in a future period by 
developing more suitable indicators that address the limitations 
of traditional Recency-Frequency-Monetary (RFM) 
frameworks. By differentially simulating the residual effects of 
identical (or similar) events based on their occurrence times, we 
propose an efficient approach to predicting the likelihood of new 
events by supplementing the Recency-Frequency (RF) function. 
This methodology mitigates the information loss in the Recency 
measure and accommodates variations in event occurrence 
times. We further develop the Time Regularity measurement, 
leveraging residual effect simulations of the events to overcome 
the limitations of conventional periodic indicators, such as 
clumpiness, which solely rely on event occurrence frequency and 
time intervals between the occurrences. The Time Regularity 
function provides a more comprehensive measure of event 
occurrence density within an observed period, as the residual 
effects increment over time. Our proposed methodologies are 
optimized for calculating the probability of event occurrences in 
a given future time frame, via a more comprehensive set of 
information regarding individual event occurrence times and 
resulting residual effects. They have potential for broad 
applications across various domains, including customer 
lifetime value analysis in marketing, medication residual rate 
and intake timing analysis in pharmaceutical contexts, 
predictive maintenance analysis such as prognostics and health 
monitoring, and many other domains under time series analysis. 
This study contributes to the advancement of predictive 
analytics by offering more accurate and robust information for 
anticipating future events. 

Keywords— clumpiness, RFM, feature engineering, predictive 
analysis 

I. INTRODUCTION 
The ability to predict short-term future outcomes by 

inference from the occurrence of repeated events for subjects 
throughout the experimental period is of significant 
importance. Researchers collect data on occurrence time, 
frequency, and intensity to accomplish this and employ the 
RFM analysis (Recency, Frequency, and Monetary) [1,2]. 
Moreover, entropy-based methods, such as clumpiness, have 
been used to quantify event distribution within a specific time 
frame [3]. As well as, a model that leverages timing 
irregularities to improve predictions of customer activities—
whether they exhibit regular, random, or clumpy timing 
patterns—has been proposed using probabilistic approaches 

such as Markov Chain Monte Carlo methods, demonstrating 
the relationship between clumpiness and the regularity 
parameter [4]. These models show broad applications 
especially in customer behavior analytics and predictions in 
marketing [1,3] and other domains such as prognostics and 
health monitoring [5,6]. 

However, both conventional RFM analysis and the 
clumpiness index have limitations in preserving the detailed 
time-series information of transaction data. Recency element 
in the widely used RFM methodology is constrained by its 
narrow focus on the most recent event occurrence time, 
leading to significant information loss. Many researchers 
redefine their Recency values to fit their research purpose, for 
instance, averaging the time distances of multiple events to the 
final observed time, or accounting only events that exceed a 
designated threshold [7,8].  

Additionally, the clumpiness index, which relies solely on 
event frequency and the inter-event times, or time intervals 
between event occurrences, is best suited for events that are 
independent of one another [9]. Consequently, the clumpiness 
index faces challenges in both statistical and practical aspects 
[10]. Also, when an event occurrence influences the subject or 
residual effects persist after the event, the likelihood of future 
events will change accordingly. If event occurrence times 
within an observed period can be obtained during the 
experiment, it is essential to implement a methodology that 
simulates posterior effects due to events based on their 
occurrence times.  

To address the limitations of existing methods, we propose 
a novel Recency-Frequency (RF) metric that preserves the 
time-related information of all events, not just the most recent. 
This approach blends the RFM’s Recency with Frequency, 
significantly improving upon current measures that neglect 
the occurrence time information from earlier events. 
Moreover, we aim to develop a Time Regularity (TR) 
measurement that accommodates the time-shifts information 
on event occurrences, allowing the analysis to consider when 
event aggregations or “clumps” appear within the observation 
period.  

To achieve this, we will incorporate the concept of residual 
effects for each recorded event, incrementally adjusting the 
impact of an event based on the event occurrence time relative 
to the observed duration. The proposed residual effects 
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increase over time, with the decay rate diminishing for more 
recent events, applying the Recency attribute. Utilizing this 
technique, the proposed Recency-Frequency function can 
effectively measure Recency of all events by aggregating their 
residual effects that change according to the various event 
occurrence times (Fig. 1). Additionally, the Time Regularity 
function indicates the density of event occurrences across 
designated time intervals by calculating the area under the 
curve for a series of residual effects (Fig. 1). These 
methodologies demonstrate the potential to significantly 
enhance the foundational information for predicting the 
likelihood of event occurrences in the future. 

 
Fig. 1. Simulated residual effects of three event occurrences at t=1, 50, and 

100 with observed time duration of 100 time-units. As the event 
occurrence times shift, the exponential decay of the residual effects 
is reduced, resulting in distinct residual impacts for events at various 
timestamps. Note that the time duration used to simulate residual 
effects is intentionally set twice the length of the observed time 
duration, at 200 time-units to maximize the residual effect for the 
latest possible event occurrence at T. 

II. ADDRESSING THE LIMITATIONS OF RECENCY IN RFM 
The RFM analysis, widely used for predicting the 

likelihood of event occurrences in future periods, is based on 
extracting the elements of Recency, Frequency, and Monetary 
value (amount or event intensity attribute) from observed 
subjects during a designated time frame [11]. Recency 
measures the time interval between the most recent event 
occurrence and the latest observed time, while Frequency 
accounts for the number of event occurrences for a subject 
within the observed duration. Monetary value represents the 
cumulative impact attributes of the events. Subjects with more 
recent, more frequent, and greater attribute values within the 
observed duration are assumed to have a higher probability of 
event reoccurrence in the future [2].  

Among these elements, Recency concentrates exclusively 
on the information from the most recent event occurrence, 
neglecting data related to all other events. While numerous 
experiments have shown that the timing of the most recent 
event significantly influences the likelihood of future event 
occurrences as noted by Wei [8], the conventional Recency 
variable has clear limitations due to the loss of information 
associated with the occurrence times of the other events. 

III. PROBLEMS WITH THE EXISTING PERIODICITY INDICATOR, 
CLUMPINESS 

The clumpiness index has been developed to measure the 
distribution of events occurring within a specific period to 
infer periodicity [9]. There are various models for calculating 
clumpiness, including entropy and log-utility models, but all 

of them rely solely on the occurrence frequency and the time 
intervals between occurrences. Clumpiness application is 
limited to cases where the effects of each event are 
independent of one another. When event occurrences 
influence the observed subjects and residual effects persist 
after the events, potentially impacting future event 
occurrences, the effectiveness of the clumpiness index 
diminishes. If the event occurrence times within an observed 
period can be obtained during the experiment, it becomes 
possible to simulate their residual effects, taking into account 
the varying occurrence times.  

To resolve these issues, we aim to create a periodicity 
measurement that incorporates residual effect simulations, 
which vary based on the event occurrence times, in predictive 
analyses with residual effects. In doing so, we can effectively 
account for the interconnectedness of events. 

IV. FORMULATING RECENCY-FREQUENCY AND TIME 
REGULARITY 

Although the conventional RFM methodology may assign 
identical Recency and Frequency values to some subjects, 
their future characteristics could still vary due to overlooked 
factors. Particularly, when extracting Recency data, it is 
within our reach for us to acquire the observed occurrence 
times for all events, rather than just the most recent one. The 
differences in occurrence times lead to variations in the overall 
residual effects, which take into account the proportionate 
influence of individual events calculated using our Recency-
Frequency measurement, and the relative distribution density 
of the repeated event occurrences, or Time Regularity.  

For each subject, the residual effect of an event occurring 
during the observed period (T) is calculated by summing the 
exponent distributions, where the stationary event occurrence 
time (tj) is divided by incrementally increasing time (i). As the 
occurrence time is divided by the incrementally increasing 
denominator through iteration (i = 1 → 2T) and then raised to 
the power of two, this process creates the decay of the residual 
effect. This exponent is an adjustable parameter depending on 
the degree of residual effect decay. As shown in Equation 1, 
this allows the initial residual effect at the occurrence time to 
start at 1, and decay at a rate based on the point in time (i). 
This calculation compensates for Recency of each event, with 
later occurrence times yielding a higher numerator value, 
resulting in an increased area under the exponential decay 
curve (Fig. 1). Despite the fact that the earlier event would 
have a longer participation period, its residual effects would 
be less than that of the possible most recent event, over the 
duration of 2T.  

The summation of residual effects of all observed events 
within the observation period accounts for the Frequency (n) 
of the events. This creates the Recency-Frequency (RF) 
measure, which captures not only the Recency of a single 
recent event, but also for all events occurring at different times 
(Fig. 2). The RF value can be divided by the frequency of 
events (n) to normalize the results, providing a new Recency 
indicator (RF/F). For example, for event j, we compute the RF 
integration of the time residual effects of (tj/i)2 over 2T, with 
the observed time duration T or current time T, only after event 
j occurred at tj. Then, we consider all events j=1,..,n. 

Furthermore, by multiplying the potential (Pj), which 
represents the appropriate magnitude for each residual effect 
calculation for an event j, the combined effect of RF and P can 
be determined. As residual effect is calculated for each event, 

1342



the influence of each event is incorporated differently. In the 
context of customer value analysis, this approach enables the 
integration of RFM into a single value. 

 
 

(1) 

RF = Recency-Frequency index, n = number of events, j is iteration 
from 1 to n, T = observed time duration, i is iteration from 1 to 2T, tj 
is occurrence time of event j, Pj is potential at tj (in terms of RFM, 
Monetary value. If repeated events, set Pj=1 to negate effects) 

 
Fig. 2. Recency-Frequency of various cases of event occurrences within 

observed time duration (T) and the visualization of the residual 
effects that make up the RF value. The iteration is extended to 2T in 
order to maximize the residual effects for the latest possible event 
occurrence at T. P described in Equation 1 is set to 1 for all cases. 

Clumpiness, one of the most commonly used irregularity 
measurements, calculates the sum of inter-event times among 
a series of events by employing an entropy function as a means 
to quantify the uncertainty in event distribution [9]. Though it 
is a straightforward technique to generate a summary variable 
for a series of events over time, its application hinges on a 
critical assumption: that the events do not impact the subjects 
or their future intentions concerning the timing of occurrences. 

Furthermore, although clumpiness has the advantage of 
measuring relative clustering of event occurrences to infer the 
periodicity of the measured events, the fact that all 
participating subjects are assumed to have the same 
participation duration makes only relative comparisons 
possible: when there are subjects with different entry and exit 
points during the observation period (e.g., online platform 
registration times, various drug administration times, etc.), it 
is impossible to make an absolute comparison as only the ratio 
of event aggregation is shown between at least two events. In 
other words, if it is not applied to subjects with similar 
participation periods, the results may skew. 

The newly devised Time Regularity function (TR) 
aggregates the magnitude of residual effects differently 
depending on their event occurrence times and inter-event 
time durations over the overall observed duration, taking into 
account the relative entry and exit points of participating 
subjects (Eq. (2)).  

The residual effect calculation works the same way as the 
proposed Recency-Frequency measurement. Time-unit (i) 
iterations are carried out within the observed period, and the 
residual effect of each event is quantified using the latest event 
occurrence time at ti divided by i and raised by the exponent. 
The event occurrence time (ti) divided by i at i is fixed to have 
a value of 1, as the numerator and the denominator are equal 

to one another in that instance. The calculation decays over 
the iteration, with the latest event occurrence time remaining 
constant until a new event occurs. This allows the residual 
effects to persist for the inter-event time duration or when the 
considered duration ends at 2T. The summation of these 
residual effect fluctuations during the inter-event times 
quantifies event density over time, inversely similar to prior 
clumpiness derivations. The main distinction is that our 
method differentiates the residual decays based on timing of 
the occurrences, emphasizing the reward for later event 
residual effects while diminishing the impacts of earlier event 
residual effects when measuring the event distribution. This 
method highly depends on the time-unit used to calculate the 
Time Regularity, which we can normalize by dividing by the 
maximum possible residual density outcome (Rmax), the 
condition where every time-unit iteration has a new event 
occurrence.  

Subsequently, the residual effect decay calculation, which 
is based on individual event occurrence times, resets upon a 
new event occurrence, as shown in Fig. 3. The TR function 
utilizes this reset mechanism to penalize clumpy phenomena. 
The overall distribution of residual effects along the observed 
period, the TR measurement, is determined by adding the 
residual effects of each event to express only during the 
corresponding inter-event time. This method promotes having 
higher frequency, evenly distributed events to maximize the 
expression of residual effects to increase the value of Time 
Regularity. However, since the residual decay is minimized, 
and the effect is maximized as the observed period approaches 
its end, late event aggregations lead to early termination of 
high residual effects through the resetting process.  

The core principle of the TR function is to simulate 
residual effects by calculating their cumulative amount during 
a specific observed period, factoring in the element that 
mitigates the decay rate using the time elapsed up to the 
current iterated time (i) as the denominator. In other words, it 
serves as a time irregularity indicator that accommodates 
various participation durations of the subjects by altering the 
residual effects based on the event occurrence time from the 
subject's perspective. This sets it apart from existing 
clumpiness indicators that only permit relative comparisons 
between participants with the same participation period, 
without taking the occurrence times and the residual effects 
into account. 

 
Fig. 3. Time Regularity of various cases of event occurrences within 

observed time duration (T) and the visualization of the curve 
resulting from residual effects that make up the Time Regularity 
value (in blue). The orange areas represent Rmax for each case. The 
iteration is extended to 2T in order to maximize the residual effects 
for the latest possible event occurrence at T. 
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(2) 

TR = Time Regularity index, R = Cumulative residual effects, Rmax 
= Cumulative residual effects when there are event occurrences for 
all ti ≤ T, T = observed time duration, i is time iteration from 1 to 
2T, ti is occurrence time of an event 

V. DESIGNING EXPERIMENTAL CASES 
To validate our proposed methods for calculating 

Recency-Frequency and Time Regularity measurements, we 
have designed nine experimental cases featuring extreme 
event occurrence distributions, as demonstrated in Table 1 and 
visualized in Fig. 4. Cases A through E display a shift in event 
aggregations from the beginning to the end of the observed 
duration, with Case C presenting an even distribution of 
events. Case F mirrors Case E but includes a late entry point, 
resulting in an even distribution. Case G and H offer a slight 
modification to Case C's even distribution, with the second 
event occurring at a time index of 19 rather than 20 for Case 
G, and the second event occurring at a time index of 21 instead 
of 20 for Case H, in order to test the continuity of the 
measurements. Case I exhibits an even distribution with an 
inter-event time of 9 instead of 10, allowing us to assess the 
convergence of the Time Regularity indicator.  

Furthermore, we compare the characteristics of Time 
Regularity with the four clumpiness property checks, as 
proposed by Zhang, Bradlow, and Small [9], to determine the 
alignment of our approach with existing methodologies. 

TABLE I.  EXPERIMENTAL CASES 

 
Observed  
duration 

(T)  
Occurrence time Indices  

Number 
of 

events 
(n)  

A 200 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  11, 12, 13, 14, 
15, 16, 17, 18, 19, 20]  20  

B 200 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  11, 12, 13, 14, 
15, 16, 17, 18, 19, 200]  20  

C 200 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100,  110, 
120, 130, 140, 150, 160, 170, 180, 190, 200]  20  

D 200 
[1, 182, 183, 184, 185, 186, 187, 188, 189, 

190, 191, 192, 193, 194, 195, 196, 197, 198, 
199, 200]  

20  

E 200 
[181, 182, 183, 184, 185, 186, 187, 188, 189, 
190, 191, 192, 193, 194, 195, 196, 197, 198, 

199, 200]  
20  

F 20 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  11, 12, 13, 14, 
15, 16, 17, 18, 19, 20]  20  

G 200 [10, 19, 30, 40, 50, 60, 70, 80, 90, 100, 110, 
120, 130, 140, 150, 160, 170, 180, 190, 200]  20  

H 200 [10, 21, 30, 40, 50, 60, 70, 80, 90, 100, 110, 
120, 130, 140, 150, 160, 170, 180, 190, 200]  20 

I 200 [19, 28, 37, 46, 55, 64, 73, 82, 91, 100,  109, 
118, 127, 136, 145, 154, 163, 172, 181, 190] 20  

Nine experimental cases for validating Recency-Frequency and 
Time Regularity measurements. Abnormal occurrence times are 
highlighted in bold. 

 
Fig. 4. Visualization of data points in each experimental case from Table 1. 

VI. RECENCY-FREQUENCY VALIDITY TESTS 
The Recency-Frequency measurement is maximized 

when event aggregations occur at the end of the observation 
period and minimized when they take place at the beginning 
of the observation period, assuming the event frequencies 
remain the same. This effect should be apparent even by the 
minimal shift in occurrence times. 

Moreover, an earlier entry point reduces the residual 
effects by increasing the iterated time duration, represented 
by the denominator i. For subjects with identical event 
distributions, a late entry point significantly enhances the 
relative residual effect due to the shorter observation time 
duration. 

Within the nine experimental cases, if the following 
relationships are satisfied, the Recency-Frequency 
measurement conforms to the designated properties:  
• A < B < C < D < E: The time-shift in event aggregations throughout 

the observed duration positively affects residual effects, causing an 
increase in Recency-Frequency.  

• E < F: Late entry points for subjects should enable calculations based 
on the relative observation duration. 

• G < C < H: Continuity of the RF value should be present 
incrementally increasing the RF value as event occurrence time is 
delayed.  

TABLE II.  RECENCY-FREQUENCY TEST FOR EXPERIMENTAL CASES 

 Recency-
Frequency 

(RF)  

Recency-
Frequency/F 

(RF/F)  

Recency  Average 
IET  

Average 
Recency  

Time 
Regularity 

(TR)  
A  1.2734 0.0637 180 1 189.5 0.1285 

B  1.7574 0.0879 0 10 180.5 0.4550 

C  8.3149 0.4157 0 10 95 0.8910 

D  11.3855 0.5693 0 10 18.5 0.4014 

E  11.9707 0.5985 0 10 9.5 0.3993 

F  149.7113 7.4856 0 1 9.5 1 

G  8.3095 0.4155 0 10 95.05 0.8912 

H 8.3202 0.4160 0 10 94.95 0.8906 

I  8.4746 0.4237 10 9.5 95.5 0.8489 

Values for Recency-Frequency (RF), normalized Recency-
Frequency (RF/F), conventional Recency (R), average inter-event 
time, average time interval from all events to the end of the 
observation time (Average Recency), and Time Regularity are 
measured. 

Event frequency directly contributes to the number of 
residual effects that comprise the Recency-Frequency 
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measurement. As a result, it is possible to normalize the RF 
value by dividing it by the event frequency to obtain a new 
normalized Recency value, RF/F. 

While Recency-Frequency (RF) and normalized Recency 
(RF/F) increase as events occur later in the observed duration, 
conventional Recency and average inter-event time lose 
occurrence time information in Cases A through E. The 
average time interval from events to the end of the 
observation time (average Recency), proposed by Hsieh [8], 
displays a downward trend as events are shifted in time. 
However, the single outlier in Case B compared to Case A 
and the single outlier in Case D compared to Case E 
contribute vastly different relative proportions to Case B and 
Case D, even though the numerical difference is the same at 
9. In the comparison between Cases A and B, the outlier 
causes 4.75% decrease, while in the comparison between 
Cases E and D, the outlier creates 94.74% increase in the 
value. Time Regularity assesses the distribution of the events 
and is not suitable for accurately evaluating the Recency and 
Frequency aspects of the cases. 

In the more detailed condition to observe the continuity 
property, we can see an incremental increase in the order of 
Cases G < C < H for both RF and RF/F. Additionally, there 
is an inverse decreasing relationship for the average time 
interval from events to the end of the observation time 
(Average Recency) and Time Regularity. 

The late entry of a participant should be considered within 
the participant’s relative time frame and assess the Recency 
and Frequency within the shorter observed duration. 
Comparing Case E and Case F reveals the same events with 
different observed durations. Having a higher value for Case 
F with more events per time duration holds true for Recency-
Frequency and RF/F, as well as Time Regularity. 
Conventional Recency, average IET, and the average time 
interval from events to the end of the observation time 
(Average Recency) cannot account for the relative observed 
duration.  

The normalized Recency value, along with the RF value 
and RFP value, which includes the magnitude P, can be used 
in conjunction with conventional RFM analysis to enhance 
the available information for making predictions. 

VII. TIME REGULARITY VALIDITY TESTS 
The four clumpiness properties proposed by Zhang, 

Bradlow and Small [9] in their research are as follows:  
• Minimum. The measure should be the minimum, if the events are 

equally spaced.  
• Maximum. The measure should be the maximum if all of the events 

are gathered together.  
• Continuity. Shifting event times by a very small amount should only 

change the measure by a small amount.  
• Convergence. As events move closer (further apart), the measure 

should increase (decrease).  
The Time Regularity index, which increases when more 

residual effects are expressed throughout the observed period 
due to regularized event distribution, has an opposite 
direction to the conventional clumpiness indices including 
entropy-like clumpiness. Therefore, the minimum and 
maximum properties of clumpiness should be inversely 
related to Time Regularity. 

The Time Regularity only approximately satisfies the 
minimum property of clumpiness, as the residual effects 
increase over the observed duration, requiring slightly larger 

inter-event time spacing for later events to maximize Time 
Regularity. However, Time Regularity conforms to the 
maximum property for the events clustered at the beginning 
of the observed duration, because the residual effects are 
minimal for the earliest times. These are further curtailed by 
the reset caused by subsequent residual effects except for the 
latest one, as seen in Case A and B in our experiments.  

The continuity property aligns with Time Regularity, as 
its residual effect shifts the same amount for both the 
numerator and denominator sides. The convergence property 
of clumpiness is consistent with the inverse of Time 
Regularity, as the reset mechanism diminishes the expression 
of residual effects when events are clustered together.  

These properties are proven through the relationship 
between Time Regularity values of the nine experimental 
cases described in Table 1.  
• Among Cases A through E, C with an even event distribution should 

exhibit the highest value for Time Regularity (lowest clumpiness).  
• A < E, B < D: In terms of future likelihood, Time Regularity should 

favor E over A concerning the Recency effect (A > E for clumpiness).  
• C < F: Despite having even event distributions with the same event 

frequency, a shorter observed duration window should increase the 
relative contribution of each event.  

• G < C < H: The minor shifts of an event one-unit time should display 
minor shifts in the regularity value satisfying the continuity property.  

• I < C: While showing even event distributions, I brings events closer 
together, thus decreasing Time Regularity (increase clumpiness).  

TABLE III.  TIME REGULARITY TEST FOR EXPERIMENTAL CASES 

 ENTL ENT 2M LU 3LC 
Time 

Regularity 
(TR) 

Recency-
Frequency 

(RF) 
A  0.8327 -0.5033 0.0005 100.6680 0.015 0.1285 1.2734 

B  0.8100 -0.5672 0.8195 95.4695 0.915 0.4550 1.7574 

C  0.0532 -2.8459 0.0475 56.9189 0.150 0.8910 8.3149 

D  0.8100 -0.5672 0.8195 95.4695 0.915 0.4014 11.3855 

E  0.8327 -0.5033 0.0005 100.6680 0.015 0.3993 11.9707 

F  0.0805 -2.8459 0.0475 56.9189 0.150 1 149.7113 

G  0.0533 -2.8454 0.0476 56.9290 0.155 0.8912 8.3095 

H 0.0533 -2.8454 0.0476 56.9290 0.155 0.8906 8.3202 

I  0.1179 -2.6514 0.0385 58.9208 0.135 0.8489 8.4746 

Time Regularity test for nine experimental cases. Values for Time 
Regularity (TR) and Recency-Frequency (RF), as well as 
conventional clumpiness indicators are measured.  

Table 3 shows that the Time Regularity index is in line 
with most of the clumpiness properties. The maximum Time 
Regularity for a specific event frequency occurs when the 
residual effects are spaced out to maximize the area under the 
curve. Among Cases A through E, Case C of an even 
distribution of events, closely approximates the ideal spread 
of residual effects. This is also true for entropy-like (ENTL), 
entropy (ENT), log-utility (LU) clumpiness measurements 
introduced by Zhang, Bradlow, and Small [9]. However, the 
second moment (2M) and three-largest-component (3LC) 
measurements are not designed to accommodate the time 
duration before the first event and after the last event. As a 
result, Cases A and E exhibit lower clumpiness (higher Time 
Regularity) due to their shorter, evenly spaced intervals.  
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The two cases with the most aggregated events over their 
respective observed durations are Case A and E, with Case A 
featuring early occurrences and Case E late occurrences of 
events. Recency is one of the most crucial elements for 
predicting future events (Wei et al., 2010), so the occurrence 
time is useful. Time Regularity incorporates this concept as 
residual effects increase over time, resulting in Case E of a 
higher Time Regularity value than A. However, conventional 
clumpiness indices are not designed for individual event 
information, but for summation of inter-event times, without 
the time-directional information. Therefore, they cannot 
distinguish between Cases A and E or B and D.  

In comparing Cases B and D, Time Regularity also 
marginally fails to evaluate Case D over B, because of the 
greater penalty for late event aggregations, as larger potential 
residual effects resulting from later occurrence times are 
curtailed by the reset mechanism. We address it using a 
parameter to the numerator i, limiting the maximum peaks of 
residual effects of earlier events. Setting the parameter 
variable equal to the observed duration (T) results in a 
numerator i+T, which prevents any earlier event’s residual 
effect from having a greater area than the reset later event’s 
residual effect. However, this approach may overly empower 
the residual effects of late events. Instead, we can combine 
the Recency-Frequency measurement with Time Regularity 
to better distinguish between event aggregation time shifts. 

Case F is a condensed version of Case C, where the 
influence of each event contribution is highest in the shortest 
observed duration. This maximizes Time Regularity as the 
residual effect expression R is at Rmax. However, clumpiness 
cannot differentiate the time scale changes. As long as the 
event distribution remains the same, the scale is not 
considered, resulting in the same clumpiness value to the 
Case C for ENT, 2M, LU and 3LC. This limitation allows for 
only relative comparison with similar observed durations.  

Cases G, C and H differ only in the second event 
occurrence, which shifts by a single time-unit difference, 
respectively. The slight shifts in both directions from C, 
resulting in Cases G and H, should cause a relatively small 
increase in clumpiness. This is true for all clumpiness indices 
as well as Time Regularity and Recency-Frequency 
measurements. However, since the reset mechanism 
compensates larger areas for earlier event aggregations, the 
time-position of the clumps inversely affects the Recency 
tendencies. This issue can be resolved by using the Recency-
Frequency measurement, which promotes later event 
aggregations. Clumpiness cannot differentiate Cases G and H, 
as they do not account for changes due to time-shifts. 

Case I clusters all Case C events to the center by reducing 
the inter-event times by one time-unit without scaling down 
the observed duration. This leads to a decrease in Time 
Regularity, as fewer residual effects are expressed in smaller 
inter-event time windows. Log-based clumpiness 
measurements, such as ENTL, ENT and LU, successfully 
capture the increased clumpiness as intended. However, 2M 
and 3LC methods fail to account for the clustering behavior, 
resulting in lower clumpiness values. 

Overall, Recency-Frequency index effectively represents 
the time-positional information of all events during the 
observed duration. Time Regularity performs well compared 
to conventional clumpiness indicators, providing information 

on the density distribution of the events. However, it cannot 
measure the time-positional information regarding event 
aggregations due to the reset mechanism, slightly reducing 
the influence for later event aggregations. Time Regularity 
should be either complemented with the Recency-Frequency 
to provide additional data on time-positional valuation, or 
adjusted by adding the abovementioned parameter. 

We observe that our RF metric can be computed in O(nT), 
order of number of total event n multiplied by the observed 
duration T and time regularity is computed in O(T). This 
assures that the proposed methods are efficiently computed.  

VIII. CONCLUSION 
We proposed Recency-Frequency and Time Regularity 

measurements to enhance the prediction of new events by 
addressing limitations of conventional RFM and clumpiness. 
By simulating numerous event times and residual effects, we 
demonstrated that these mitigate the information loss in the 
Recency measure, allow event time variations, and leverage 
residual effect simulations and events density, thus promising 
for calculating the probability of new events. They have 
potential for many applications in marketing, pharmaceutical 
areas, predictive maintenance analysis, etc., with more 
accurate and robust information for future events. 
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