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Abstract—Robotic grasping within a cluttered environment 
has shown its potential for improvement through the integration 
of pushing. Nevertheless, achieving an effective pushing strategy 
remains a persistent challenge. Furthermore, the complexity is 
heightened in highly cluttered environments, particularly when 
dealing with stacked objects, posing significant difficulties for 
successful grasping. To address these issues, we propose a method 
aimed at enhancing pushing mechanisms by incorporating an 
information-theoretic measure of entropy. This integration 
facilitates the efficient clearance of obstacle objects surrounding 
the target object. Additionally, we leverage depth information as 
a foundational action prior, seamlessly integrating it into Q-value 
calculations. This integration results in an enhanced exploration 
strategy, consequently improving the grasping of stacked objects. 
Furthermore, we ensure the stability of grasping through reward 
shaping, achieved by accounting for changes in the object's pose. 
We conducted an evaluation of our approach using three distinct 
object types within a simulation environment, which revealed a 
notably higher rate of successful grasping in comparison to the 
baseline method. To substantiate our findings, we proceeded to 
test the model within a real-world setting, where the proposed 
approach showcased a substantial enhancement, reinforcing the 
efficacy of our method. 
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I. INTRODUCTION 
Effectively performing object grasping in a cluttered robotic 

environment remains a notable challenge, primarily due to the 
close presence of surrounding objects in relation to the target 
objects. This proximity heightens the potential for collisions 
between the gripper and nearby obstacles during the grasping 
process, which, in turn, elevates the likelihood of task failures. 
In such scenarios, employing pushing maneuvers can serve to 
strategically rearrange cluttered objects, creating sufficient 
space for the fingers to facilitate successful grasping. 

Numerous research endeavors have explored the realm of 
manipulation techniques, encompassing both grasping and 
pushing. Some studies aimed at developing effective grasping 
policies have concentrated on optimizing affordance or analytic 
metrics [1, 2, 3], yielding promising results. Similarly, a 
significant body of research has been devoted to pushing 

techniques, which focus on altering an object's pose [4, 5, 6]. 
Nevertheless, the challenge remains in seamlessly integrating 
these distinct approaches, given their independent 
developmental paths and the absence of a shared underlying 
objective. Another noteworthy limitation in prior research is its 
emphasis on relatively straightforward tasks, often overlooking 
the incorporation of precise target-related specifics [7, 8, 9]. 
Even when target-centric grasping has been explored, the 
objects tend to be distinctly separable [10, 11]. One particular 
study that addresses both target-driven grasping and complex, 
cluttered environments has shown promising results. However, 
achieving such outcomes necessitates the inclusion of 
supplementary information, such as a target object mask, 
facilitated through perception mechanisms [12]. 

In this work, we introduce an approach that enhances both 
pushing and grasping models using vision-based reinforcement 
learning (RL). Our primary goal for pushing is to increase the 
efficiency of removing obstructing objects around the target 
object, which is accomplished by integrating an information-
theoretic measure. Furthermore, we utilize depth information as 
a fundamental action guideline, seamlessly incorporating it into 
the computation of Q-values. This fusion leads to an enhanced 
exploration strategy, resulting in improved grasping of stacked 
objects. Moreover, we bolster the stability of the grasping 
procedure by tailoring rewards to account for object pose 
variations. Our method encompasses comprehensive 
enhancements to both grasping and pushing models, 
culminating in superior performance with respect to grasping 
success rates. This superiority is substantiated through testing in 
simulated as well as real-world scenarios, showcasing notable 
advancements over the baseline methodology. 

II. METHODS 

A. System Overview 
Our system consists of three modules, as depicted in Fig. 1: 

a perception module, a task/motion plan module, and an action 
prediction module. The perception module extracts the 
identification and center position of all objects from an RGB 
scene image captured by a side camera using OpenCV library. 
The task planning module then establishes the sequence for 
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grasping a target object and assigns primitive actions, such as 
reaching and grasping, based on the object’s information 
obtained from the perception module. The motion planning 
module, using the Moveit library [13], is used to move the robot 
arm based on the target actions received from the task planning 
module. The grasping module is trained using reinforcement 
learning in a simulation to determine the gripper's pose based on 
the depth image of the target object. This results in achieving the 
most stable grasp, assisted by pushing actions.  

B. Action Prediction Model 
The objective of the action prediction model is to achieve 

stable grasping of the target object in a cluttered environment, 
aided by pushing actions. Our model is essentially built upon the 
foundation of VPG in [9], with certain modifications 
implemented. These modifications involve incorporating an 
action prior to enhance sample efficiency and employing an 
information-theoretic measure for making decisions regarding 
pushing. The overall model architecture for the action prediction 
model is depicted in Fig. 2. 

The task planner initially guides the robot arm to the center 
of the target object in order to capture a top-view depth image 
using a wrist camera. Subsequently, the depth image is 
transformed into a 3D point cloud in camera coordinates, 
utilizing the camera's intrinsic parameters. This 3D point cloud 
is then converted from camera coordinates to world coordinates, 
employing the camera's extrinsic parameters. Ultimately, this 
sequence of transformations culminates in the generation of a 
heightmap, which is defined as a state within the context of 
reinforcement learning. 

                        𝐻𝐻𝐻𝐻𝐻𝐻 𝐻  −∑ 𝑃𝑃 𝐻𝑃𝑃𝑖𝑖𝐻𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃 𝐻𝑃𝑃𝑖𝑖𝐻
𝑛𝑛
𝑖𝑖𝐻1           (1) 

The entropy, defined in (1) and serving as a measure of 
image complexity, is calculated to determine the necessity of the 
pushing action. As illustrated in Fig. 3, the entropy increases 
with an increasing number of objects in an image. Pushing is 
carried out when the image's entropy surpasses a predetermined 
threshold, which ultimately leads to the removal of objects. This 
process subsequently aids grasping by eliminating obstacle 
objects from the target object's vicinity. We assign the reward 

function for pushing, as described in (2), to maximize the change 
in entropy. This change is defined as the difference between the 
entropies of the previous image and the current image, aiming 
to reduce the complexity around the target object as effectively 
as possible. 

𝑅𝑅PUSH𝐻𝒔𝒔𝒕𝒕, 𝒂𝒂𝒕𝒕𝐻 𝐻 𝐻𝐻𝑡𝑡𝑡𝑡𝐻𝐻𝐻𝐻 𝑡 𝐻𝐻𝑡𝑡𝐻𝐻𝐻𝐻                  (2) 

This differs from the one in VPG in the sense that a constant 
reward is provided when a detectable heightmap change occurs. 
However, this approach does not always yield the optimal action, 
as the reward is given based on the evident heightmap change, 
even in cases where nearby objects might actually move closer 
to the target object, potentially worsening the grasping outcome. 
Our method demonstrates an improvement in pushing actions by 
elevating grasping performance. The action space of the pushing 
model consists of the 3D gripper's pose 𝐻x, y, 𝜑𝜑𝐻, where only 
planar motion is assumed to take place. 

The reward for the grasping model is devised to be inversely 
proportional to the change in the object's pose, as depicted in (3), 
where 𝑞𝑞 represents the quaternion of the grasped object. 

𝑅𝑅GRASP𝐻𝒔𝒔𝒕𝒕, 𝒂𝒂𝒕𝒕𝐻 𝐻  𝛼𝛼 |𝑡 + √∆𝑥𝑥2 + ∆𝑦𝑦2|⁄ + 𝛽𝛽 |𝑡 + √∆𝑞𝑞2|⁄   (3) 

This signifies that minimal change yields heightened grasp 
stability. The heightmap, containing 3D scene information, 
offers insights into the spatial distribution of objects. Integrating 
this data into the Q-value computation could potentially enhance 
the grasping model and reduce exploration time. The 
incorporation of this action prior, as depicted in (4), along with 
the heightmap, adjusts the Q-value as described in (5). 

𝐴𝐴𝑃𝑃 𝐻𝐴𝐴𝑡𝑡, 𝑎𝑎𝑡𝑡𝐻 𝐻 �
𝑡,     if  𝐴𝐴𝑡𝑡 > 0
0,   otherwise                           (4) 

where 𝐴𝐴𝑡𝑡 is the heightmap. 

𝑎𝑎𝑡𝑡 𝐻 max
𝑎𝑎𝑡𝑡

𝑄𝑄𝐻𝐴𝐴𝑡𝑡, 𝑎𝑎𝑡𝑡𝐻 𝐴𝐴𝑃𝑃 𝐻𝐴𝐴𝑡𝑡, 𝑎𝑎𝑡𝑡𝐻 + 𝐴𝐴𝑡𝑡            (5) 

Adding the heightmap to the Q-value prompts the policy to 
acquire the ability to grasp objects from above. This proves 
advantageous in scenarios involving densely stacked objects, 

Fig. 1. Overview of the system: The system consists of three distinct sub-tasks - perception, task/motion planning, and action prediction. 

1367



such as bin picking, where the grasping sequence needs to occur 
from the top down. 

C. Training Policy 
The training of the action predictive model is conducted in 

two phases, as illustrated in Fig. 4. In the first phase, only the 
grasping model is trained in a simple environment where the 
target object is positioned solely at the center of the image. Once 
the grasping model has converged, additional objects are 
introduced into the environment, leading to the presence of 
cluttered objects. The second phase of training is subsequently 
resumed to further learn the pushing model. Both the grasping 

and pushing models undergo updates while dealing with 
complex object configurations. The significance of the initial 
training lies in the grasping model's ability to retain the 
knowledge of grasping the target object located at the center, 
even without explicit cues such as a segmented mask indicating 
the target object's region. 

III. EXPERIMENTS 

A.  Simulation Experiments 
The action predictive model underwent training within a 

simulated robotic environment utilizing CoppeliaSim [14]. Our 
testing encompassed three distinct object types: a vehicle 
suspension model, a teeth model, and the YCB model [15], as 
shown in Fig. 5. In each episodes, the objects are introduced into 
the environments, resulting in a cluttered workspace. The 

Fig. 4. Training procedure for grasping and pushing model  

Fig. 3. Image complexity metric: entropy 

Fig. 2. Architecture of the action prediction model: This model's architecture involves image acquisition, image feature extraction, decision-making for 
pushing/grasping, and estimation of grasping/pushing poses. 

Fig. 5. Tested object types in a simulated environment. 
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learning curves for both the teeth model and the YCB model in 
Fig. 6 demonstrate that our modified Q-value-based approach 
exhibits superior performance in comparison to the non-
modified version. For the teeth model, there is a notable 
enhancement in both sample efficiency and performance, with 
improvements of 37% and 10%, respectively. Similarly, for the 
YCB model, we observe advancements of 50% in sample 
efficiency and 5% in performance. A comprehensive overview 
of the evaluation results can be found in Table 1. It is evident 
that our model exhibits superior performance across all three 
types, even in challenging scenarios such as teeth bin picking, 
where objects are smaller, more densely stacked, and present in 
a cluttered arrangement. 

TABLE I.  GRASPING SUCCESS RATE (%) 

Object Types 
Methods 

Our model Baseline 
(VPG) 

Suspension 97.3 % 88.7 % 

Teeth 87.2 % 77.6 % 

YCB 92.3 % 83.8 % 
 

B.   Real-World Experiments 
We conducted testing of our model using a 3D-printed 

suspension model within a real-world setting, as depicted in Fig. 
7. The experimental setup comprises a UR5 robot arm, a 
RealSense L515 camera mounted on the robot's wrist, and a 
Robotiq 2F-85 gripper. The suspension model itself consists of 
three distinct part types: the cap, shaft, and spring. We 
conducted tests on 50 different scenarios by altering the position 
and orientation of objects. In each scenario, seven objects were 
closely located to each other. The evaluation results presented in 
Table 2 highlight that our model surpasses the VPG, even within 
the real-world environment. The observed performance decline, 
when contrasted with simulation results, can be attributed to the 
presence of noisy depth images captured by the L515 camera.  

TABLE II.  GRASPING SUCCESS RATE (%) 

Object Types 
Methods 

Our model Baseline 
(VPG) 

Cap 90.3 % 80.7 % 

Shaft 93.2 % 83.6 % 

Spring 92.1 % 84.8 % 

 
 

IV. DISCUSSION AND FUTURE WORK 
We presented an approach rooted in vision-based 

reinforcement learning, addressing the obstacles posed by 
cluttered environments to attain proficient grasping outcomes. 
Our method encompasses enhancements to both the grasping 
and pushing models, leading to superior performance in terms 
of grasping success rates. This superiority was demonstrated 
across both simulated and real-world settings, showcasing 
substantial advancements compared to the baseline 
methodology. In our future endeavors, our focus will extend 
towards incorporating a broader range of objects encompassing 
diverse shapes, sizes, and textures for training and method 
evaluation. This comprehensive approach seeks to thoroughly 
assess the efficacy of our methodology across a wider spectrum 
of real-world environments. Furthermore, our upcoming 
research will delve into addressing the challenges of sim-to-real 
transfer, aiming to mitigate any decline in real-world 
performance that might arise during the deployment of our 
approach. 
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