
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Method on Neural Network Optimization
Deployment Frameworks for Lightweight Target

Devices

Jaebok Park
AI Computing System SW

Research Section
ETRI

Daejeon, Korea
parkjb@etri.re.kr

 Changsik Cho
AI Computing System SW

Research Section
ETRI

Daejeon, Korea
cscho@etri.re.kr

Kyunghee Lee
AI Computing System SW

Research Section
ETRI

Daejeon, Korea
kyunghee@etri.re.kr

Jiyoung Kwak
AI Computing System SW

Research Section
ETRI

Daejeon, Korea
jiyoung@etri.re.kr

Abstract—The development of artificial intelligence neural
networks requires specialized knowledge in the industry. The
process of creating and deploying neural networks is very
difficult for software developers who lack knowledge. Therefore,
there is a need for tools that can easily develop neural network
applications in industries. In order to meet these needs, this
paper proposes a deployment optimized for a target device by
automatically generating a specification-based neural network.
First, the user simply selects the desired system and neural
network requirements. The proposed framework utilizes user
specifications to generate the desired neural network. Next,
template code is generated based on the generated neural
network. Finally, the neural network is deployed to target
devices. In this way, we present a method to build an artificial
intelligence neural network application deployment easily and
quickly.

Keywords— Neural Network, AutoML, Deployment, NAS, Deep

I. INTRODUCTION
NAS(Neural Architecture Search)[1][2] can automate the

design of neural networks by searching for the type and form
of the most suitable neural network structure to solve a
specific problem through deep learning. NAS is an automated
technology adopted by data scientists to build and optimize
neural networks for their intended purpose.

Even in small businesses, rapid development of neural
network applications is required. For these needs, neural
network deployment methods such as the searching of neural
networks and the optimization of a target device are required.
For fast deployment of neural network application services,
we have to solve problems such as repeated experimentation
of the optimal technique and the repeated error verification of
neural networks.

The neural network application development process can
be divided into neural network creation and neural network
deployment. First, the neural network searches for a desired
neural network in the neural network space according to the
purpose. Then, the neural network is trained according to the

purpose. This neural network creation process requires an
expert level.

Neural network deployment requires optimized
deployment in various HW acceleration environments to meet
the performance requirements of the target. In addition, the
deployment requires technical know-how in optimizing neural
network acceleration in a cloud environment, an on-device
environment with various acceleration environments, a
distributed environment in which edge and edge devices are
linked, and a collaborative environment in which various
sensor devices are linked.

This paper presents an automatic neural network
generation and deployment framework that can optimally
deploy to a desired target device. The proposed framework
searches a neural network according to user requirements, and
the neural network is trained using the generated neural
network and learning data. Finally, the desired neural network
is optimized and provided. The created neural network
automatically optimizes the neural network by considering the
target devices performance according to the requirements.
Based on the learned neural network and requirements, the
final application template code is generated by considering the
input and output of the neural network, the input of inference
data, and the output of inference values. The generated
application template code and the trained neural networks can
be easily deployed on the target device through a container
build.

The neural network deployment system is divided into a
master device and a slave device according to user
requirements, and generates a container-type neural network
inference engine and deploys it to each device. Additionally,
we also offer single device and single deployment on edge
devices. The optimized deployment framework presented in
this paper solves difficult problems from neural network
searching, training, and target optimal deploying for the rapid
development of neural network application services. In
particular, a neural network is generated according to user
requirements. We proposed a method for creating and
deploying application template codes using the generated
neural network.

1286979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

II. PROPOSED AUTOMATIC NEURAL NETWORK GENERATION
AND DEPLOYMENT FRAMEWORK

The automatic neural network creation and deployment
tool makes it easy and fast to search for neural networks by
simply filling out user specifications to develop and operate
deep learning applications. It is a technology that
automatically generates and distributes desired learning neural
networks and application template codes. In particular, this
automatic neural network distribution tool provides
developers with insufficient neural network knowledge to
easily and quickly develop and deploy desired neural network
application services.

Fig. 1. The process of automatic neural network creation and deployment

As shown in Figure 1, the automatic neural network
creation and deployment tool inputs requirements such as
application, target device, performance, and training data for
learning. Through neural network search technology, a neural
network suitable for user requirements and learning data is
generated. Basically, proposed framework retrieves the basic
neural network architecture through NNI[3] and generates a
Yolo-based[4] detection neural network structure. Automatic
neural network generation is a target adaptive neural network
search technology, which provides automatic generation of
neural networks with simple input. In the project manager, a
neural network is generated with only a few inputs, such as
data set, target device, application service, and learning
method. The execution process is displayed (AutoNN start
point/Epoch/end point, etc.) in the console window using the
color of the execution module after reorganization
(distribution and loading).

Fig. 2. Easy target device setting using GUI

As shown in Figure 2, when adding a device, NLP is
provided to fill in the device performance figures. Multi-
device selection gives you how to decide (Cloud, PC,
Ondevice, etc.) In detail, the model selection module
integrates the model selection algorithm into the automatic
generation of specification-based and visualization-based
neural networks. This neural network model expands the
Yolov7 neural network model and the Resnet neural network
source code, and generates a neural network Yaml suitable for
each device. The automated machine learning pipeline of
automatic neural network generation is shown in Figure 3
below.

Fig. 3. Machine Learning Pipeline for Automatic Neural Network Creation

In the automatic neural network creation, hyper parameter
optimization (HPO) optimizes hyper parameters to improve
the performance of neural network models. In order to design
the optimal hyperparameter search technology considering the
data set and the neural network model, we analyzed the factors
related to the performance of the model. As a result, if the LR
(Learning Rate) is small, the learning rate is slow, but the
performance error is small. Conversely, as the LR increases,
the learning rate speeds up, but the performance error
increases. Therefore, it was designed with a relatively large
Cyclical Momentum applied to LR.

We train the neural network using the generated neural
network and the training data entered by the user. Next, the
application code is generated, and the neural network is
optimized based on the requirements of the target. As shown
in Figure 5, the operation flow receives the neural network
information generated by the module of automatic neural
network generation. The deployment information is described
after generating the neural network execution code. Finally,
through deploying, it is delivered to the trained neural network
in the target device.

Fig. 5. Operation flow for deploying neural networks

III. EXPERIMENT AND VALIDATION OF THE GENERATED
NEURAL NETWORK

In this section, we present a deployment method that
optimizes accelerator-based adaptive execution codes. First,
we optimized the pytorch-based[5] neural network file (.pt)
generated by the automatic neural network generation module.
The pt file generated by the automatic generation module was
optimized from automatic generation to learning process.
Therefore, in the deployment stage, the accelerator-based
adaptive execution image is optimized and deployed. First,
our optimization method proceeds with optimization by
converting pt files to onnx[6]. The converted onnx-based
neural network code is converted to fit the target. Currently,
we are developing to consider the adaptive deployment of
various target systems.

In this paper, Nvidia-based TensorRT[7] converting and
Rockchip-based RKNN accelerated converting are provided.
First, neural network technology can be developed using the
TensorRT engine to improve the weight and speed of the
target device. The pt file generated by automatic neural
network creation matches the input and output of the neural
network, and converts it to ONNX. The command below

1287

converts the pt file into the onnx file, and the next command
converts the converted onnx file into the Tensorrt-based code.

python3 export.py —weights yoloe.pt --grid --end2end --simplify --
topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640
python3 convert.py –o yoloe.onnx -e yoloe.trt -p fp16

The converter creates a Tensorrt based neural network

with nms and float point 16. Table 1 analyzes the performance
using the our generated neural networks. We compared the
performance of Jetsot AGX Orin[8] and Jetson AGX Xavier[9]
using video files. As shown in the table, there is a performance
difference between torch acceleration and Tensorrt
acceleration. Through this, it was possible to confirm
optimization from neural network creation to deployment.

TABLE I. PERFORMANCE ANALYSIS OF DEPLOYED NEURAL
NETWORKS

Jetson AGX Orin Jetson AGX Xavier

Torch TensorRT Torch TensorRT
yoloe-tiny 62FPS 229FPS 50FPS 184FPS
yoloe 39FPS 104FPS 32FPS 62FPS
yoloex 35FPS 68FPS 31FPS 44FPS

Next, the process of creating a Rockchip NPU neural
network is as follows. First, in order to run a neural network
on the NPU, a neural network model such as Caffe,
TensorFlow, TensorFlow Lite, ONNX, or Darknet must be
converted into an RKNN-based neural network. The converter
is supported in the form of Docker in TANGO's[10]
deployment module. TANGO is being developed using the
proposed technologies. The neural network optimization
supports quantization methods including an asymmetric
quantization and a dynamic fixed point quantization. The
RKNN's compilation uses pre-compilation technology to
reduce model loading time. Pre-compiled RKNN models can
only run on hardware platforms with NPUs. The RKNN-based
neural network lightweighting proceeds through a conversion
process as shown in Figure 6.

Fig. 6. RKNN-based neural network lightweight conversion process

For performance analysis, we analyzed using Odroad-
M1[11] equipped with Rockchip. Odroid-M1 is equipped with
Rockchip's RK3568B2. Specifications of the Rockchip
RK3568B2 processor dedicated to the single-board computer
sector, it has 4 cores and a maximum frequency of 2.0 GHz.
We used Yoloe and existing yolo models for validation. The
function was verified by operating the converted RKNN
neural network along with the target template code in Odroid-
M1.

The FPS of the RKNN-based neural network is shown in
Table 2. The speed of the neural network is the highest in
yolove-tiny. However, the accuracy may be low. However, it

is very useful depending on the application in the industrial
embedded board.

TABLE II. PERFORMANCE ANALYSIS OF RKNN-BASED YOLO
NEURAL NETWORKS

Neural networks FPS(speed)
yolov5n
yolov5s
yolov5m
yolov5l
yolov5x
yolove-tiny
yolove

13.6
6.4
4.3
2.4
1.4
14
2.4

IV. CONCLUSION
Developing artificial intelligence neural networks requires

specialized knowledge. In particular, the process of creating
and deploying neural networks is difficult for software
developers. Therefore, a tool that can easily develop neural
network applications is required. The proposed optimized
deployment technology creates a neural network considering
the environment of the target device. Next, an application
template is provided so that the generated neural network can
be optimized and easily operated in the target. We analyzed
the usefulness of the generated neural networks using two
targets. The analysis showed performance improvement of the
optimization on Jetson series boards. RKNN-based analysis
provided an easy and fast way to deploy neural networks on
target. In the future, we will develop TANGO that can
automatically deploy neural networks quickly and easily. In
addition, various devices will be supported so that they can
be used in various industries.

ACKNOWLEDGMENT
This work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No. 2021-0-
00766, Development of Integrated Development Framework
that supports Automatic Neural Network Generation and
Deployment optimized for Runtime Environment)

REFERENCES
[1] M. Tan et al., “MnasNet: Platform-aware neural architecture search for

mobile,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2019,
pp. 2820.2828.

[2] Google, “Google AutoML Beta,” 2020. [Online]. Available:
https://cloud.google.com/automl/, 2020.

[3] NNI(Neural Network Intelligence), https://github.com/microsoft/nni,
2022

[4] Glenn Jocher. Yolov5 in pytorch. https://github.com/ultralytics/yolov5,
2020

[5] Pytorch, https://pytorch.org/, 2022
[6] ONNX: Open Neural Network Exchange, https://onnx.ai/, Accessed in

May, 2022
[7] NVIDIA Corporation, “Nvidia tensorrt,” [Online]. Available:

https://developer.nvidia.com/tensorrt, 2023
[8] Nvidia Corporation, “Jetson Orin Technical Specifications,” [Online].

Available: https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-orin/, 2023

[9] Nvidia Corporation, “Jetson Xavier Technical Specifications,” 2023.
[Online]. Available: https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-agx-xavier/, 2023

[10] J. Park, H. Kim, S. Kim, K. Lee, C. Cho et al., https://github.com/ML-
TANGO/TANGO, 2023

[11] Hardkernel Corporation, “Odroid-M1”, 2023

1288

