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Abstract—The development of artificial intelligence neural 
networks requires specialized knowledge in the industry. The 
process of creating and deploying neural networks is very 
difficult for software developers who lack knowledge. Therefore, 
there is a need for tools that can easily develop neural network 
applications in industries. In order to meet these needs, this 
paper proposes a deployment optimized for a target device by 
automatically generating a specification-based neural network. 
First, the user simply selects the desired system and neural 
network requirements. The proposed framework utilizes user 
specifications to generate the desired neural network. Next, 
template code is generated based on the generated neural 
network. Finally, the neural network is deployed to target 
devices. In this way, we present a method to build an artificial 
intelligence neural network application deployment easily and 
quickly. 
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I. INTRODUCTION 
NAS(Neural Architecture Search)[1][2] can automate the 

design of neural networks by searching for the type and form 
of the most suitable neural network structure to solve a 
specific problem through deep learning. NAS is an automated 
technology adopted by data scientists to build and optimize 
neural networks for their intended purpose. 

Even in small businesses, rapid development of neural 
network applications is required. For these needs, neural 
network deployment methods such as the searching of neural 
networks and the optimization of a target device are required. 
For fast deployment of neural network application services, 
we have to solve problems such as repeated experimentation 
of the optimal technique and the repeated error verification of 
neural networks. 

The neural network application development process can 
be divided into neural network creation and neural network 
deployment. First, the neural network searches for a desired 
neural network in the neural network space according to the 
purpose. Then, the neural network is trained according to the 

purpose. This neural network creation process requires an 
expert level.  

Neural network deployment requires optimized 
deployment in various HW acceleration environments to meet 
the performance requirements of the target. In addition, the 
deployment requires technical know-how in optimizing neural 
network acceleration in a cloud environment, an on-device 
environment with various acceleration environments, a 
distributed environment in which edge and edge devices are 
linked, and a collaborative environment in which various 
sensor devices are linked. 

This paper presents an automatic neural network 
generation and deployment framework that can optimally 
deploy to a desired target device. The proposed framework 
searches a neural network according to user requirements, and 
the neural network is trained using the generated neural 
network and learning data. Finally, the desired neural network 
is optimized and provided. The created neural network 
automatically optimizes the neural network by considering the 
target devices performance according to the requirements. 
Based on the learned neural network and requirements, the 
final application template code is generated by considering the 
input and output of the neural network, the input of inference 
data, and the output of inference values. The generated 
application template code and the trained neural networks can 
be easily deployed on the target device through a container 
build. 

The neural network deployment system is divided into a 
master device and a slave device according to user 
requirements, and generates a container-type neural network 
inference engine and deploys it to each device. Additionally, 
we also offer single device and single deployment on edge 
devices. The optimized deployment framework presented in 
this paper solves difficult problems from neural network 
searching, training, and target optimal deploying for the rapid 
development of neural network application services. In 
particular, a neural network is generated according to user 
requirements. We proposed a method for creating and 
deploying application template codes using the generated 
neural network. 
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II. PROPOSED AUTOMATIC NEURAL NETWORK GENERATION 
AND DEPLOYMENT FRAMEWORK 

The automatic neural network creation and deployment 
tool makes it easy and fast to search for neural networks by 
simply filling out user specifications to develop and operate 
deep learning applications. It is a technology that 
automatically generates and distributes desired learning neural 
networks and application template codes. In particular, this 
automatic neural network distribution tool provides 
developers with insufficient neural network knowledge to 
easily and quickly develop and deploy desired neural network 
application services. 

Fig. 1. The process of automatic neural network creation and deployment 
 

As shown in Figure 1, the automatic neural network 
creation and deployment tool inputs requirements such as 
application, target device, performance, and training data for 
learning. Through neural network search technology, a neural 
network suitable for user requirements and learning data is 
generated. Basically, proposed framework retrieves the basic 
neural network architecture through NNI[3] and generates a 
Yolo-based[4] detection neural network structure. Automatic 
neural network generation is a target adaptive neural network 
search technology, which provides automatic generation of 
neural networks with simple input. In the project manager, a 
neural network is generated with only a few inputs, such as 
data set, target device, application service, and learning 
method. The execution process is displayed (AutoNN start 
point/Epoch/end point, etc.) in the console window using the 
color of the execution module after reorganization 
(distribution and loading).  

Fig. 2. Easy target device setting using GUI 

As shown in Figure 2, when adding a device, NLP is 
provided to fill in the device performance figures. Multi-
device selection gives you how to decide (Cloud, PC, 
Ondevice, etc.) In detail, the model selection module 
integrates the model selection algorithm into the automatic 
generation of specification-based and visualization-based 
neural networks. This neural network model expands the 
Yolov7 neural network model and the Resnet neural network 
source code, and generates a neural network Yaml suitable for 
each device. The automated machine learning pipeline of 
automatic neural network generation is shown in Figure 3 
below.  

Fig. 3. Machine Learning Pipeline for Automatic Neural Network Creation 

In the automatic neural network creation, hyper parameter 
optimization (HPO) optimizes hyper parameters to improve 
the performance of neural network models. In order to design 
the optimal hyperparameter search technology considering the 
data set and the neural network model, we analyzed the factors 
related to the performance of the model. As a result, if the LR 
(Learning Rate) is small, the learning rate is slow, but the 
performance error is small. Conversely, as the LR increases, 
the learning rate speeds up, but the performance error 
increases. Therefore, it was designed with a relatively large 
Cyclical Momentum applied to LR. 

We train the neural network using the generated neural 
network and the training data entered by the user. Next, the 
application code is generated, and the neural network is 
optimized based on the requirements of the target. As shown 
in Figure 5, the operation flow receives the neural network 
information generated by the module of automatic neural 
network generation. The deployment information is described 
after generating the neural network execution code. Finally, 
through deploying, it is delivered to the trained neural network 
in the target device. 

 
Fig. 5. Operation flow for deploying neural networks 

III. EXPERIMENT AND VALIDATION OF THE GENERATED 
NEURAL NETWORK 

In this section, we present a deployment method that 
optimizes accelerator-based adaptive execution codes. First, 
we optimized the pytorch-based[5] neural network file (.pt) 
generated by the automatic neural network generation module. 
The pt file generated by the automatic generation module was 
optimized from automatic generation to learning process. 
Therefore, in the deployment stage, the accelerator-based 
adaptive execution image is optimized and deployed. First, 
our optimization method proceeds with optimization by 
converting pt files to onnx[6]. The converted onnx-based 
neural network code is converted to fit the target. Currently, 
we are developing to consider the adaptive deployment of 
various target systems. 

In this paper, Nvidia-based TensorRT[7] converting and 
Rockchip-based RKNN accelerated converting are provided. 
First, neural network technology can be developed using the 
TensorRT engine to improve the weight and speed of the 
target device. The pt file generated by automatic neural 
network creation matches the input and output of the neural 
network, and converts it to ONNX. The command below 
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converts the pt file into the onnx file, and the next command 
converts the converted onnx file into the Tensorrt-based code. 

python3 export.py —weights yoloe.pt --grid --end2end --simplify --
topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 
python3 convert.py –o yoloe.onnx -e yoloe.trt -p fp16 

 
The converter creates a Tensorrt based neural network 

with nms and float point 16. Table 1 analyzes the performance 
using the our generated neural networks. We compared the 
performance of Jetsot AGX Orin[8] and Jetson AGX Xavier[9] 
using video files. As shown in the table, there is a performance 
difference between torch acceleration and Tensorrt 
acceleration. Through this, it was possible to confirm 
optimization from neural network creation to deployment. 

TABLE I.  PERFORMANCE ANALYSIS OF DEPLOYED NEURAL 
NETWORKS 

 
Jetson AGX Orin Jetson AGX Xavier 

Torch TensorRT Torch TensorRT 
yoloe-tiny 62FPS 229FPS 50FPS 184FPS 
yoloe 39FPS 104FPS 32FPS 62FPS 
yoloex 35FPS 68FPS 31FPS 44FPS 

 

Next, the process of creating a Rockchip NPU neural 
network is as follows. First, in order to run a neural network 
on the NPU, a neural network model such as Caffe, 
TensorFlow, TensorFlow Lite, ONNX, or Darknet must be 
converted into an RKNN-based neural network. The converter 
is supported in the form of Docker in TANGO's[10] 
deployment module. TANGO is being developed using the 
proposed technologies. The neural network optimization 
supports quantization methods including an asymmetric 
quantization and a dynamic fixed point quantization. The 
RKNN's compilation uses pre-compilation technology to 
reduce model loading time. Pre-compiled RKNN models can 
only run on hardware platforms with NPUs. The RKNN-based 
neural network lightweighting proceeds through a conversion 
process as shown in Figure 6. 

                                                                 
Fig. 6. RKNN-based neural network lightweight conversion process 

For performance analysis, we analyzed using Odroad-
M1[11] equipped with Rockchip. Odroid-M1 is equipped with 
Rockchip's RK3568B2. Specifications of the Rockchip 
RK3568B2 processor dedicated to the single-board computer 
sector, it has 4 cores and a maximum frequency of 2.0 GHz. 
We used Yoloe and existing yolo models for validation. The 
function was verified by operating the converted RKNN 
neural network along with the target template code in Odroid-
M1. 

The FPS of the RKNN-based neural network is shown in 
Table 2. The speed of the neural network is the highest in 
yolove-tiny. However, the accuracy may be low. However, it 

is very useful depending on the application in the industrial 
embedded board. 

TABLE II.  PERFORMANCE ANALYSIS OF RKNN-BASED YOLO 
NEURAL NETWORKS 

Neural networks FPS(speed) 
yolov5n 
yolov5s 
yolov5m 
yolov5l 
yolov5x 
yolove-tiny 
yolove 

13.6 
6.4 
4.3 
2.4 
1.4 
14 
2.4 

 

IV. CONCLUSION 
Developing artificial intelligence neural networks requires 

specialized knowledge. In particular, the process of creating 
and deploying neural networks is difficult for software 
developers. Therefore, a tool that can easily develop neural 
network applications is required. The proposed optimized 
deployment technology creates a neural network considering 
the environment of the target device. Next, an application 
template is provided so that the generated neural network can 
be optimized and easily operated in the target. We analyzed 
the usefulness of the generated neural networks using two 
targets. The analysis showed performance improvement of the 
optimization on Jetson series boards. RKNN-based analysis 
provided an easy and fast way to deploy neural networks on 
target. In the future, we will develop TANGO that can 
automatically deploy neural networks quickly and easily. In 
addition, various devices will be  supported so that they can 
be used in various industries. 
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