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Abstract—Computer Numeric Control (CNC) milling ma-
chines on the manufacturing field has significantly impact on
product quality. Anomalies during CNC milling can disrupt
manufacturing costs. Addressing such failures manually presents
substantial challenges. As an alternative, artificial intelligence
(AI) has been used manufacturing sites, enabling real-time data
analysis and anomaly detection. However, AI’s realization relies
on quality data acquisition, a time-intensive process compounded
by labeling. We proposes a continual active learning framework
to enhance AI model learning from limited datasets in manufac-
turing. This paper presents three active learning methodologies:
Least Confidence (LC), Entropy Sampling (ES), and Active
Transfer Learning for Adaptive Sampling (ATLAS). We evaluate
these methods using CNC milling machine data against Simple
Random Sampling (SRS). Results highlight those methods have
improved performance rather than SRS.

Index Terms—CNC milling machine, Manufacturing, Anomaly
Classification, Deep Learning, Continual Active Learning

I. INTRODUCTION

The Computer Numeric Control (CNC) milling machine
situated within manufacturing sites plays an important role
and has a great influence on the quality of the product
[1]. The occurrence of anomaly situations within the CNC
milling process can significantly impact cost problems of
the manufacturing site. However, the consistent vigilance and
management of such failure scenarios by human personnel
present formidable challenges. Consequently, the concept of
smart factory has emerged as an imperative paradigm within
the contemporary manufacturing landscape [2]. This trajec-
tory is intrinsically aligns with the forefront of the Fourth
Industrial Revolution, wherein smart factories emerge. These
factories hold the potential to not only elevate productivity
levels but also enhance the overall quality of produced items.
Of particular significance is the convergence of Artificial
Intelligence (AI) advancements, which have imbued the smart
factory concept with innovate capabilities. The integration of
Al and machine learning technologies has enabled real-time
data analysis and pattern recognition within production pro-
cesses [3]. It is important to underscore, however, that for the
realization of an Al-powered automated system as outlined, the
acquisition of ample high quality of data is indispensable [4].
The process of data accumulation for practical application is
both time-intensive and resource-demanding included further
by the laborious task of data labeling. This intricate interplay
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underscores the necessity of pragmatically implementing Al
within the manufacturing sphere, necessitating a continuous
cycle of data collection, labeling, and model refinement.

In this paper, we propose an continual active learning
framework that can continuously learn AI models like online-
model in the manufacturing field from small dataset. Active
learning is the approach that involves an interactive process
where the model actively selects and queries the most in-
formative data points from a larger pool of unlabeled data
[5]. Three selected methodologies of active learning: Least
Confidence (LC), Entropy Sampling (ES) and Active Transfer
Learning for Adaptive Sampling (ATLAS) was described, and
verified with CNC milling machine dataset compared with
Simple Random Sampling (SRS) methods. Overall, LC, ES,
and ATLAS methods all showed better performance than
SRS. Among them, ATLAS in particular showed the best
performance.

The remaining paper is organized as follows: In section II,
we describe the proposed methodology about anomaly classi-
fication with continual active learning. Section III shows the
experimental results of proposed methods. Finally, conclusion
will be shown in section IV.

II. METHODOLOGY

The primary goal of continual active learning is to make the
learning process more efficient by focusing on the most rele-
vant examples that are likely to provide the most information
to the model. Fig. 1 shows the process flow of continual active
learning. It assumes that data collection is continuously taking
place. The collected data belongs to an unlabeled dataset, and
an active learning module is formed based on the classification
model. The queries z* selected by the active learning module
are transmitted to oracle for labeling, and the configured
{z*,y} data is included as a trainable dataset, and used for
retraining the classification model.

A. Classification model

A fully connected neural network was selected as a model
for anomaly classification from the collected manufacturing
data. The model for classification anomality can be replaced
with RNN-based models or CNN-based models to improve
better performance depending on the situation. In this paper,
since we want to confirm that the accuracy of the model is
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Fig. 1. Continual Active Learning Framework
Layer (type) Output Shape Param #
flatten 1 (Flatten) (None, 3500) 0
dense_3 (Dense) (None, 128) 448128
dense_ 4 (Dense) (None, 64) 8256
dense_5 (Dense) (None, 2) 130

Total params: 456,514
Trainable params: 456,514
Non-trainable params: 0

Fig. 2. Anomaly Classification Model Structure

improved through continuous retraining starting from a limited
amount of data, we adopted a basic deep learning method
rather than other complex models. This model is consisted
of four layers as shown in Fig. 2, using ReLU activation
functions, and softmax function at the end.

B. Active Learning module

In this section, three methods are introduced as active
learning modules: LC, ES, and ATLAS. Moreover, SRS was
used as sampling without replacement, and was compared with
other active learning methods as the most basic method for
data sampling.

Uncertainty Sampling - Least Confidence (LC). For
choosing the most informative samples, uncertainty sampling
identify unlabeled data that are the near a decision boundary
in classification model [6]. In case of least confidence method,
the data with the lowest maximum probability should be
selected. Eq. (2) shows the maximum probability y among
each class confidence. Finally, sample sy is chosen by the
lowest value within maximum probability as shown Eq. (1).
The advantage of LC is that it is easy to implement, but it is
vulnerable to outliers.

spo = argmaz(l — P(g|x)) (D)

§ = argmaz(P(y|x)) 2)
y

Uncertainty Sampling - Entropy Sampling (ES). As
different as LC method, entropy sampling use the maximum
entropy as a uncertainty measure indicator instead of confi-
dence [6]. Eq. (3) shows how to get sample sg with maximum
entropy. Maximum entropy is an indicator of the amount of
information and often shows the strongest performance among
uncertainty sampling. On the other hand, it is also vulnerable
to outliers like LC method.

sp = argmam(— ZP(ﬁi|$) log P(gi|x)) 3)

Active Transfer Learning for Adaptive Sampling (AT-
LAS). Unlike the LC and ES methods mentioned above,
which measure uncertainty from confidence results of clas-
sification model, active transfer learning selects the samples
with learning a new model by shifting the existed classification
model [7]. To learn the new model, validation label data is
manipulated as follows. If the result of classification is correct,
validation label data become O (correct), and if the result is
inaccurate, validation label data become 1 (incorrect). The
ATLAS model is configured by changing the layer at the end
through transfer learning based on the existing trained classi-
fication model, and trained with manipulated validation data.
The confidence value with the closest incorrect is determined
to be the most informatively necessary and is selected as the
sample {sary } that needs to be newly labeled. ATLAS has the
strength of being flexible through continuous updates without
being vulnerable to outliers. However, there is a disadvantage
that it takes a long time for continuous learning.

III. EXPERIMENTAL STUDY
A. Experimental Settings & Dataset

To verify feasibility of active learning methods, we construct
the experiments with SRS sampling and three active learning
methods. The CNC milling machine dataset [8] used in this
experiment was collected in the field. Totally, seven vari-
ables are collected: CNC cutting conditions-S, CNC cutting
conditions-F, X tool position, Y tool position, Z tool position,
spindle motor-U CT and spindle motor-V CT. The dataset was
preprocessed with 500 time steps for anomaly classification.

Pre-processed datasets are divided into training set
{ X4, Y}, validation set { X a1, Yoar | test set { Xye, Yie } and
unlabeled set { X, Yun }- The ratio of sets is decided 1:3:3:3
because it assumes that training starts from small amount of
data. The experiment scenario is as follows.

1) Classification model is trained with labeled training set
{X trs Y;r}

2) The accuracy of classification model is calculated with
test set { X¢e, Yz}

3) The methods of the active learning module (SRS, LC,
ES, ATLAS) are based on the classification model results
on the validation set { X,q1, Yoai}-

4) Top number of N among unlabeled data { X, Y,,} in
the active learning module are selected new samples for
labeling.
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Fig. 3. Experimental Results

5) Selected new sample is labeled and updated the training
set { X}, Vi ).

6) Classification model is retrained with updated labeled
training set {X;., Y-}

7) Go to step 2) and continue repeating for the set number

of cycles.

In this experiments, the number of data is 994 in training set,
2983 in validation set, 2983 in test set, and 2983 in unlabeled
set. The number of cycles is set 20, and the number of selected
new samples in active learning module per cycle is set 100
based on a tenth of the training set.

B. Results

The experimental results are shown in Fig. 3. All of active
learning module methods perform better than SRS method.
Since SRS select samples randomly, the probability of adding
example which is helpful to retrain is the lowest. On the other
hand, LC method shows the fastest accuracy improvement
in the beginning (N < 200). Though it performed lower
classification accuracy rather than the other in a few sec-
tion, it shows significantly good results 0.9075 at 18 epoch
(N = 1800). ES method is gradually improved, and then it
shows similar performance with LC, SRS in the second half
(1000 < N < 2000). In 10-18 epochs (1000 < N < 1800),
LC, ES, and SRS results is fluctuated because classification
model is not enough to robust. The result of ATLAS shows
robust and high accuracy. As a result, suggested active learning
methods are verified to perform better than SRS for adapting
in the field. Particularly, ATLAS method can be best solution
since it is accurate and robust.

IV. CONCLUSION

In this paper, we proposed anomaly classification with con-
tinual active learning in manufacturing sites. A fully connected
neural network is used for anomaly classification model, LC,
ES and ATLAS methods are suggested for active learning. All
of active learning modules show the better performance than

SRS, which is applicable to real field. ATLAS particularly
shows the fastest growth rate of accuracy. As a result, it is
expected to be of great help in terms of operation and man-
agement by presenting a method to gradually solve the lack of
data at manufacturing sites using CNC milling machines. As
future work, we will conduct several experiments by changing
the composition of the dataset in order to reduce fluctuation
of result. We also plan to apply other unlabeled CNC dataset
from other sites.
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