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Abstract—In this paper, we explain the property prediction 
and manufacturing process condition inference methodology of 
ceramic materials with the introduction of AI models and 
perform PoC of the proposed method. We selected the optimal 
model by applying data with various input characteristics 
related to material properties to regression/classification 
machine learning models with proven performance. The 
accuracy of the final selected model was more than 90%, 
showing the possibility of drastically reducing the material 
development period. 
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I. INTRODUCTION

In order for the domestic material industry to have global 
competitiveness, it is important not only to create materials 
with optimal physical properties but also to develop materials 
by exploring optimal material synthesis methods in a short 
time. In general, in order to develop a new material, several 
raw materials are mixed, synthesized through various complex 
processes, and then the performance of the material is checked. 
When synthesizing most materials, the physical properties of 
the materials vary sensitively depending on the process 
conditions as well as the properties of the raw materials. 

For this reason, most industry / academia / research 
institutions directly synthesize all possible combinations of 
composition information and process variables to check 
performance or explore materials with good performance 
based on the experience and insights of individual researchers. 
However, this material search method consumes a lot of time 
and resources and relies heavily on the researcher's experience 
and ability.  

To solve this problem, industries, academia, and research 
institutes are trying various methods, and recently, they are 
focusing on developing material development systems using 
AI(Artificial Intelligence) models (machine learning and deep 
learning) based on big data. In this paper, we explain the 
property prediction and manufacturing process condition 
inference methodology of ceramic materials with the 
introduction of AI models and experiment with the possibility 
of a proposed method. We experimented with property 
prediction and process condition inference possibilities by 
applying data with various input properties related to material 
properties to regression/classification machine learning 
models with proven performance.  

Currently, AI is receiving a lot of attention in various fields 
and is being actively researched. However, in the field of 
material development, AI is not introduced relatively well 
compared to other fields, and one of the reasons is that 

material development researchers cannot easily use AI. In 
order to learn and apply AI models to processes, data related 
to material development must be analyzed, and knowledge of 
AI models is required. Therefore, it is necessary for general 
material researchers to develop a program that can easily 
apply their data to AI. 

Ceramic parts are essential for related processes as high-
tech manufacturing industries such as semiconductors, 
secondary batteries, electric vehicles, and displays have 
recently grown. There are many applications of fine ceramics, 
which are very important in modern life, and they are largely 
divided into four types as shown in Figure 1, including 
electrical/electronic ceramics, energy/environmental ceramics, 
mechanical/structural ceramics, and bio-ceramic. 

Fig. 1. Applications of Fine Ceramics as an Essential Ceramic Parts 

Fine ceramic materials refer to refined minerals, 
artificially synthesized inorganic compounds, or materials 
synthesized from their compositions, and are materials that 
exhibit various industrial functions through precision molding, 
heat treatment, and processing. Repeated experiments shall be 
conducted under various raw material combinations and 
process conditions to develop materials that satisfy the 
required properties in various application fields. To reduce the 
time and cost of this process, we experimented on 
methodologies to predict target properties and infer 
compositions and process conditions that satisfy the required 
properties using the main machine learning models, regression 
models and classification models. With the introduction of the 
AI model, we explain the property prediction and 
manufacturing process conditions inference methodology of 
ceramic materials and perform PoC (Proof of Concept) of the 
proposed method. 

We selected the optimal model by applying data with 
various input characteristics related to material properties to 
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regression/classification machine learning models with 
proven performance. The accuracy of the final selected model 
is more than 90%, and we have confirmed the possibility of 
drastically reducing the material development period through 
the proposed method. 

II. RELATED WORKS

Recently, interest in artificial intelligence technology in 
the field of material development can be said to be explosive, 
and the biggest reason is the rapid prediction speed. For 
example, existing computational science technology (first 
principle-calculation) took months to predict material 
properties, but artificial intelligence can be shortened to 
minutes. Basically, unlike the existing computational science 
method, artificial intelligence's prediction method is a method 
of finding a correlation between material (composition and 
structure) information and physical properties in the material 
property DB and predicting the properties of new materials 
based on this. Principles such as quantum mechanics, fixed 
mechanics, and statistical mechanics are not typically used. 
For this reason, artificial intelligence-based material design 
technology can provide a new paradigm in the field of material 
development. 

In [1], material artificial intelligence technology is 
identified as the fourth paradigm for material development. In 
other words, it is classified into a first-order paradigm that 
relies on experience and trial and error tests, a second-order 
paradigm based on thermodynamics, a third-order paradigm 
based on computational science, and a fourth-order paradigm 
based on artificial intelligence. Currently, artificial 
intelligence is being used in various ways in the field of 
material design. In particular, research is actively underway in 
the field of developing new theoretical methods to overcome 
the shortcomings of existing computational science and 
technology, the field of predicting physical properties from 
material information quickly (forward prediction technology), 
and the field of reverse prediction technology. 

However, the prediction performance of these models is a 
limitation in improving the accuracy of the prediction model 
due to the complexity of space and time between the 
environment and the source and the problem that the 
prediction value converges to an average concentration as the 
prediction time increases in the artificial neural network [2]. 

Recently, research results that predict the characteristics of 
materials using machine learning based on a large amount of 
material data obtained based on density functional theory 
(DFT) are drawing attention[3-10]. Material data based on 
quantum calculation DFT include molecular electrode 
material development[3], energy band gap prediction[4], 2-
dimensional magnetic material characteristic prediction[5], 
thermoelectric material development[6], and superhard 
material development[7-10]. 

Among them, bulk modulus and shear modulus related to 
the mechanical properties of the material correspond to 
representative properties used to develop materials with 
excellent hardness and incompressibility. Expectations for the 
development of new ultra-hard materials are growing as 
machine learning is recently used to identify material 
candidates with excellent mechanical properties using volume 
elasticity and shear elasticity coefficient data obtained through 
DFT quantum calculations. 

In [10], they uses three machine learning models: Support 
Vector Machine Regression(SVR), Random Forest 
Regression(RF), and Xgboost Regression(XGB), but each 
model was optimized through cross validation(CV) and 
hyper-parameter tuning. Based on the results of the regression 
analysis of each model, the predicted material characteristics 
of each model were compared with each other using two 
performance indicators: the coefficient of determination (R2-
score) value and the root-mean-square-error (RMSE).

We used regression models and classification models for 
property prediction and process condition inference in the 
development of ceramic dielectric materials, respectively. To 
analyze the performance of the experimental model, MSE, 
RMSE, and R2-score were used as regression models, and the 
optimal model was selected using accrual indicators for 
classification models. 

III. SYSTEM DESIGN FOR PROPERTIES PREDICTION AND 
PROCESS INFERENCE OF CERAMIC MATERIAL

We simplified the ceramic process into four major 
processes: ball mill, spray drying, molding, and sintering, and 
summarized data related to quality and physical properties 
considered in each process as shown in Fig. 2. The ball mill 
process is a process of making slurry by mixing raw materials, 
and a mixing ratio, a ball mill rotation speed, and a mixing 
time are important factors. The slurry is transformed into 
powder through a spray drying process, and in this process, 
slurry visibility, atomizer rotational speed, and inlet/outlet 
temperature have an important influence on material 
properties. In the molding process, tap density, molding 
pressure, and pressure retention time related to the density of 
the product are correlated with quality, and in the sintering 
process, the heating rate, temperature retention time, and 
retention temperature that affect the contraction of the product 
were considered as important input data. 

Fig. 2. List of data related to fine ceramics production procedures and 
material characteristics for each process 

A number of experiments shall be conducted to find 
product manufacturing conditions that satisfy the required 
properties because of the property determined not only by 
combining raw materials but also by various conditions set in 
the manufacturing process.  

TABLE I.  NUMBER OF RAW MATERIAL COMBINATIONS AND 
EXPERIMENTAL CONDITIONS FOR THE DEVELOPMENT OF DIELECTRIC 

MATERIALS FOR FUTURE VEHICLES

Sortation Raw 
combination Composition Processes Properties 

No. 
Dataset 37~49 49 49 49 

For example, as shown in Table 1, up to 67,620 
experiments in raw material combinations, composition, 
process conditions, and physical properties are required to 
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develop genetic materials for future vehicles, which cause 
numerous time and huge cost losses. The experimental 
conditions for optimal composition and process exploration of 
genetic materials for future vehicles are up to 67,620 cases, 
and assuming that the time required per experiment is one 
hour, the time required to conduct all experiments is well over 
seven years. 

To solve this problem, we predicted ceramic material 
properties by inputting various conditions as shown in Figure 
3, designed a methodology that can backward raw material 
composition and process conditions to meet the required 
properties, and tested the possibility using genetic material 
experimental data. 

Fig. 3. Forward & Backward Methodology Schematic Diagram for 
Predicting the Properties of Ceramic Materials and Inferring Conditions 
Satisfying the Required Properties 

Figure 4 shows how to select a material property and 
condition inference model through the concepts of input 
features and target features switching between machine 
learning regression models and classification models. If the 
combination of ceramic raw materials and process conditions 
are entered into the regression model and the property to be 
predicted is set as the target feature, the regression model 
provides the material property prediction as the result value. 
At this time, only the prediction model of the set target feature 
is generated. Conversely, the composition and condition 
inference model uses the required property, that is, the target 
feature, as an input, and a classification model is created for 
each feature used as an input to predict material properties. 

Fig. 4. Material Properties and Conditions Inference Model Selection 
Method using Input and Target Features Switching Concepts between 
Regression and Classification Models 

Figure 5 shows the flowchart for material properties and 
condition inference methods through input feature switching 
between regression models and classification models. Even if 
the optimal model is selected according to the proposed 

procedure, the data preprocessing, feature selection process, 
and fine tuning process through hyperparameter setting are 
repeated if the reference performance is not satisfied. 

Fig. 5. Flowchart for Predicting the Properties of Ceramic Materials and 
Driving the Process Condition Inference System 

IV. EXPERIMENT AND ANALYSIS OF MACHINE LEARNING 
MODEL FOR PREDICTING PROPERTIES OF CERAMIC 

DIELECTRIC MATERIALS AND INFERENCING PROCESS 
CONDITIONS

We used genetic material experimental data (MDF: 
Miniature Data Factory) with 37 characteristics and selected 
21 features correlated with target features through correlation 
analysis. Among the 21 features, target features to predict 
material properties used barium/titanium molar ratio, purity, 
tetragonality, crystallinity, specific surface area, density, 
dielectric constant, and dielectric loss coefficients. Only purity, 
specific surface area, dielectric constant, and dielectric loss 
coefficient met the requirements. 

Fig. 6. Data Preprocessing Results of Selecting 21 Features through 
Correlation Analysis between Input Features 

A. Material Properties Prediction Test using Regression 
Models 
There were 370 datasets used to learn the physical 

properties prediction model of the four dielectric materials, 
and the train set and test set ratios were set to 0.7 and 0.3. The 
machine learning regression model used to predict physical 
properties performed AutoML on 20 subjects, including the 
Gradient Boosting Stressor, Extreme Gradient Boosting, Extra 
Tree Stressor, Bayesian Ridge, and K-Neighbors Stressor. 
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Figure 7 shows the learning results of the optimal model for 
four target features. 

Fig. 7. Regression Model Training Results for 4 Properties(Purity, Specific 
surface area, Permittivity, Dielectric loss factor)

It can be seen that a machine learning regression model 
suitable for predictive properties is selected differently 
depending on the correlation and data distribution between 
input and target features. Through machine learning model 
experiments, we were able to confirm that the specific surface 
area among the properties of genetic materials had the best 
prediction performance (R2-score), and in the case of the 
dielectric loss factor, it was inappropriate to predict properties 
through a machine learning regression model. Table 2 shows 
the fit model and the performance of the model for each 
feature. 

TABLE II.  PERFORMANCE ANALYSIS OF MATERIAL PROPERTIES 
PREDICTION BY REGRESSION MODEL

Target 
Property 

Regression 
Model MSE RMSE R2-

Score 

Purity 

Extra Trees 3.53 1.87 0.66 

Decision Tree 3.61 1.89 0.66 
Extreme Gradient 
Boosting 3.61 1.89 0.66 

Specific 
surface area

Extra Trees 0.06 0.21 0.93 
Extreme Gradient 
Boosting 0.06 0.21 0.93 

Decision Tree 0.06 0.22 0.93 

Permittivity

Gradient Boosting 373,521 609.69 0.68 
Light Gradient 
Boosting 397,299 628.86 0.66 

Random Forest 407,371 636.94 0.65 

Dielectric 
loss factor 

Bayesian Ridge 1,077 31.17 0.25 

Lasso Regression 1,078 31.2 0.24 

Elastic Net 1,078 31.2 0.24 

B. Inference Test of Composition and Process Conditions 
using Classification Models 
Thirteen features were considered for composition and 

process inference by property, but nine features were selected, 
excluding features with one or less classes(conditions). Here 
we used nine classification models: Gradient Boosting, 
Random Forest, Logistic Regression, Ada Boost, Decision 
Tree, and Support Vector Machine (SVM). Table 3 shows the 
top three optimal models for each of the six required physical 
properties feature with high model accuracy. Due to the nature 
of the classification model, the model accuracy was 1.0 for 
BaCO3 Purity and Ball mill mixing time with only two classes, 
and the compliance model performance was 0.9 or higher for 
features with four classes. 

Unlike the property prediction regression model, the 
composition and process inference model by property is 
characterized by a large difference in performance for each 
classification model type. This means that the selection of 
highly correlated features through data preprocessing and the 
selection of optimal models through AutoML are important. 

TABLE III.  PROCESS CONDITION INFERENCE PERFORMANCE ANALYSIS 
BY CLASSIFICATION MODEL

Target 
Condition Classification Model Accuracy 

BaCO3
Composition 

Gradient Boosting 0.938 

Random Forest 0.902 

Logistic Regression 0.696 

BaCO3 Purity

Ada Boost 1.0 

Decision Tree 0.973 

Logistic Regression 0.964 

Ball mill 
mixing time 

Ada Boost 1.0 

Gradient Boosting 1.0 

Decision Tree 0.973 

Sintering 
retention 
temperature 

SVM(Support Vector Machine) 0.813 

Decision Tree 0.795 

Gradient Boosting 0.795 

Calcination 
holding 
temperature 

Gradient Boosting 0.991 

Random Forest 0.902 

Decision Tree 0.893 

Calcination 
holding time 

Gradient Boosting 0.946 

Decision Tree 0.911 

Random Forest 0.893 

V. RESULTS AND FURTHER STUDY

With the introduction of the AI model, we explained the 
methodology for predicting the properties of ceramic 
materials and inferring manufacturing process conditions, and 
performed PoC of the proposed method. We selected the 
optimal model by applying data with various input 
characteristics related to material properties to 
regression/classification machine learning models with 
proven performance. The accuracy of the final selected model 
was more than 90%, showing the possibility of drastically 
reducing the material development period. In the future, we 
plan to apply a deep neural network to features that have not 
obtained the required performance by applying a machine 
learning model, and to evaluate the impact of property 
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prediction by feature and apply the results to the 
prediction/inference model by applying an explainable 
artificial intelligence (XAI) model. 
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