
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

A Packet Processing Scheme in 5G MAC Protocol
Using DPDK

Jaesu Song, Heesang Chung

Mobile Communication Research Division
Electronics and Telecommunications Research Institute

Dae-Jeon, Korea
{heretic, hschung}@etri.re.kr

Abstract— In this paper, we propose a packet processing

scheme in the MAC protocol of 5G NR. In general, data plane

protocols such as MAC, RLC, and PDCP use DPDK library for

high-speed data processing. We implement the MAC layer of 5G

NR using DPDK library on high performance server platform

and measure the packet processing time of the MAC layer.

Specifically, the multiplexing and demultiplexing functions of

the MAC protocol are implemented and tested on a server

platform. Through these measurement results, we found that

what affects the packet processing time is the number of MAC

SDUs multiplexed into the MAC TB rather than the size of the

MAC PDU. We also compare the packet processing time

according to the existing packet processing scheme and the

newly proposed method applied to 5G NR MAC. Through this,

it was confirmed that the new packet processing method shows

better performance when a large number of packets are

multiplexed into one MAC PDU.

Keywords— 5G NR, MAC, packet processing, DPDK, 3GPP

I. INTRODUCTION

Looking at the direction of evolution of mobile
communication systems such as 4G LTE, 5G NR and beyond
5G, it is characterized by using wider bandwidth to support
application services requiring high data rates. For example, in
the case of a 4G (LTE) system, the system bandwidth is 20
MHz, but 5G (NR) system supports up to 400 MHz in case of
FR2. A characteristic of such ultra-wideband system is that
the size of a transport block (TB) to be processed in the MAC
layer increases according to the system bandwidth. MAC
PDU(Protocol Data Unit) or TB has to be processed within
one TTI which is scheduling unit of MAC protocol. So from
the transmission point of view of a MAC protocol, it is
necessary to construct one TB with a plurality of packets
received from the upper layer within one TTI and transfer the
TB to a physical layer. From the packet processing point of
view, as the size of the TB increases and the number of packets
constituting one TB increases, it takes more time to construct
the TB. Therefore, since the MAC basically has to perform all
functional operations within one TTI, a high-speed packet
processing method is required. For this reason, the data plane
protocol usually uses the DPDK library[1] for high-speed
packet processing.

In general, since packets received from a network interface
are firstly processed in the kernel, context switching between
kernel space and user space occurs when we need to process
the packets in user space. This context switching is one of the
factors that make high-speed packet processing difficult.
DPDK is a software tool developed by Intel that enables high-
speed data processing by enabling users to access and process
the packets from network interface bypassing the kernel. By

using DPDK, we can perform network packet processing
while avoiding context switching and data copy. Figure 1
compares standard packet processing and DPDK packet
processing scheme.

In this paper, we propose a new packet processing scheme
in the MAC protocol of 5G NR and implement the proposed
scheme using the DPDK library on a high performance server
platform. To show the superiority of the proposed method, we
also measure and analyze the packet processing time of the
MAC layer. In particular, the packet processing time is
measured according to the TB size and the number of packets
constituting the TB.

This paper is organized as follows: Section 2 describes the
implementation of MAC protocol using DPDK library and
section 3 includes packet processing scheme of DPDK. In
section 4, we perform the measurement of packet processing
time and analyze the results and conclude this paper in section
5.

II. IMPLEMENTATION OF MAC PROTOCOL

One example of a MAC PDU of 5G NR MAC is shown in
Figure 2. The MAC PDU consists of one or more MAC
subPDUs and each MAC subPDU is made of a control signal
(MAC CE) generated by the MAC protocol itself or data
(MAC SDU) received from an upper layer. At the end of the
MAC PDU, an additional padding MAC CE is added to make
the MAC PDU match a TB size. In order to perform the
multiplexing function of the MAC layer, a MAC subPDU is
created by attaching a MAC subheader to a MAC CE or MAC
SDU, and sequentially copied to a continuous memory area to
generate a MAC PDU. To this end, multiple memory
allocations and copying must be accompanied, which

Kernel Space

User Space
Applications

DPDK LibApplications

Network Stack

Device Driver

NIC

Poll Mode Driver

NIC

Standard DPDK

Fig. 1. Standard and DPDK packet processing[2]

1423979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

degrades packet processing performance. In order to do these
tasks at high speed, DPDK provides the following APIs.

• rte_pktmbuf_prepend(): API that appends a MAC
subheader to a MAC CE or a MAC SDU

• rte_pktmbuf_chain(): API that links MAC
subPDUs into a linked list

• rte_pktmbuf_linearize(): API that combines the
linked list of MAC subPDUs into one packet

DPDK manages internally packets in the form of packet
buffer as shown in Figure 3. A structure called mbuf is located
at the front of the packet buffer, and the actual data follows it
with head room and tail room. When the rte_pktmbuf_chain()
API is called, the packet buffer structure is changed into a
linked list as shown in Figure 4. Each MAC subPDU is stored
in the linked list as one data. The mbuf at the beginning of
each packet buffer has a pointer pointing to the next data in
the linked list. After chaining the MAC subPDUs, in order to
combine MAC subPDUs stored in the linked list into one
MAC PDU, it is necessary to call the rte_pktmbuf_linearize()
API. The result of calling the API is a packet buffer composed

of one data as shown in Figure 3, and the length of the data is
equal to the sum of all data in the linked list.

When considering the packet processing procedure of
DPDK described above, the factors that require processing
time to generate the MAC PDU are as follows.

• Attaching MAC subHeader

• Chaining MAC subPDUs into a linked list

• Linearizing(combining) MAC subPDUs into a
MAC PDU

There is a head room in front of and a tail room at the end
of the actual data in the packet buffer of DPDK as shown in
Figure 3. When protocol headers or tails are added in DPDK,
the contents are stored in the head room or tail room, so
additional memory allocation or memory copying does not
occur. Therefore, little processing time is required to perform
the subHeader attachment. Secondly, in order to chain a MAC
subPDU into a linked list, it is required to search for the mbuf
of the last data and link the MAC subPDU as the last data of
the linked list. Therefore, when a MAC subPDU is added to a
linked list with N data, N search operations are needed. Lastly,
memory copying occurs in the processing of combining MAC
subPDUs in a linked list into one MAC PDU. At this time, the
processing time required to perform memory copy is
determined by the number of data in the list and the size of the
data.

III. PACKET PROCESSING SCHEME

We consider two methods for transforming MAC
subPDUs that exist in the form of a linked list into one MAC
PDU.

A. Scheme-1(One linearize after all chain)

In this scheme, all MAC subPDUs are inserted to a linked
list by calling a rte_pktmbuf_chain() API, and after that a
MAC PDU is created with single rte_pktmbuf_linearize() call.
Figure 5 shows this scheme. The MAC subPDU is added to
the linked list sequentially and combined into one MAC PDU
together at the end. In this method, when a MAC subPDU is
attached to a linked list with N data, N search operations are
needed. Therefore, if a MAC PDU is to be generated with N
MAC subPDUs, the total number of searches required is as
follows.

𝑁𝑁(𝑁𝑁 − 1)
2

B. Scheme-2(Repetition of chain & linearize) – proposed

One MAC subPDU is added to a linked list by calling a
rte_pktmbuf_chain() API and combined into one data through
rte_pktmbuf_linearize() API call. This procedure is repeated
N-1 times for each MAC subPDU. In this method, since the
number of data in the linked list is always 1, the number of
searches required when adding MAC subPDU is also 1.
Therefore, the total number of searches required when
generating a MAC PDU with N MAC subPDUs is N-1 times.
In this paper, we propose this method as a new scheme. Figure
6 describes this scheme. As you can see from the figure,
rte_pktmbuf_chain() and rte_pktmbuf_linearize() are always
called in pairs. The number of data of the linked list does not
exceed 2.

mbuf
head room tail room

rte_pktmbuf_pktlen(m)
or rte_pktmbuf_datalen(m)

rte_pktmbuf_mtod(m)

m->pkt.next = NULL
m->buf_addr

rte_pktmbuf_pktlen(m)
or rte_pktmbuf_datalen(m)

Fig. 3. Packet buffer(one-segment) in DPDK[4]

m1 mseg2 mseg3

rte_pktmbuf_datalen(m) rte_pktmbuf_datalen(m) rte_pktmbuf_datalen(m)

m->pkt.next = mseg2 m->pkt.next = mseg3 m->pkt.next = NULL

rte_pktmbuf_pktlen(m) =
rte_pktmbuf_datalen(m) + rte_pktmbuf_datalen(mseg2) + rte_pktmbuf_datalen(mseg3)

Fig. 4. Packet buffer(multi-segment) in DPDK[4]

R/LCID
subheader MAC CE R/F/LCID/L

subheader MAC CE R/F/LCID/L
subheader MAC SDU

MAC subPDU MAC subPDU

...

MAC subPDU MAC subPDU
(padding)

...

R/LCID
subheader MAC CE R/F/LCID/L

subheader MAC CER/F/LCID/L
subheader MAC SDU

MAC subPDU MAC subPDU

...

MAC subPDU MAC subPDU
(padding)

...

(a) DL MAC PDU

(b) UL MAC PDU

Fig. 2. Example of MAC PDU[3]

1424

We compare the two methods described above. The
number of rte_pktmbuf_chain() API call is the same for both
schemes. However, the number of rte_pktmbuf_linearize()
API call is 1 and N-1 times in the Scheme-1 and Scheme-2
respectively. However, regardless of the number of the API
calls, the number of memory copy is the same. So the
complexity of combining MAC subPDUs into a MAC PDU is
not different. However, the number of searches of the linked
list is different between two schemes. The Scheme-1 is N(N-
1)/2 and the Scheme-2 is N-1.

IV. PERFORMANCE EVALUATION

5G NR MAC protocol is implemented on high
performance server platform. The specifications of the
platform are shown in Table 1. We measured the packet
processing time to generate the MAC PDU using the
implemented MAC protocol. The environment of
performance test is shown in Figure 7. The MAC protocol on
the test platform receives IP packets from the traffic generator,
creates MAC PDUs, and then transmits them to the PHY
emulator whthin TTI.

The packet processing time according to the two methods
described above is measured and compared. In Figure 8, the
packet processing time is measured while varying the number
of MAC subPDUs constituting one MAC PDU. At this time,
the size of the MAC PDU is fixed at 5000 bytes. As shown in
Figure 8, the two schemes show similar performance up to 50
MAC subPDUs. However, when the number of MAC
subPDUs is more than 50, the packet processing time of
Scheme-2 is measured to be lower than Scheme-1. As
mentioned in the previous section, this performance gap can
be understood as being caused by the difference in the number
of linked list searches between the two schemes. When the

number of MAC subPDUs is 100, the performance difference
between the two methods is about 37%.

In Figure 9, the packet processing time is measured while
fixing the number of MAC subPDUs constituting one MAC
PDU and changing the size of the MAC PDU. Here, the
number of MAC subPDUs constituting the MAC PDU is fixed
at 20. As shown in Figure 9, there is little performance
difference between the two methods. Comparing Figure 8 and
Figure 9, we can see that the packet processing time is greatly
affected by the number of MAC subPDUs consisting of one
MAC PDU but not by the size of the MAC PDU.

V. CONCLUSION

A packet processing method using DPDK in MAC
protocol is proposed. We showed that the proposed method
(Scheme-2) is superior to the existing scheme (Scheme-1) by
measuring the packet processing time on high performance
server platform. It is also shown that the packet processing
time is determined by the number of MAC subPDUs
multiplexed into one MAC PDU rather than the size of the
MAC PDU. It is expected that future mobile communication
systems will evolve into ultra-broadband system. This means
that the size of a MAC PDU increases in a mobile
communication system, and accordingly, the number of MAC
subPDUs constituting one MAC PDU increases. Therefore,
the method proposed in this paper will need to be applied to
future ultra broadband mobile communication systems.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (RS-2023-
00216221, Development of service coverage extension
technologies for 5G-Advanced mobile communications based
on reconfigurable intelligent surface).

TABLE I. TEST ENVIRONMENT

Item Description

Server platform Supermicro SuperServer 5019D-FN8TP

CPU Intel® Xeon® Processor D-2183IT @ 2.2GHz
16 cores

Memory DDR4, 64GB: 16GB x 4 DIMMs

NIC Dual LAN with 10Gbase-T

DPDK version 18.05

OS Ubuntu 18.04.1 LTS

gcc version 7.5.0

kernel version 4.15.0-60-generic

Traffic
Generator

Test
platform

PHY
emulatorIP packet

Slot Ind

Fig. 7. Performance test environment

subPDU1

subPDU1 subPDU2

subPDU1 subPDU2 subPDU N

...

...

MAC PDU

rte_pktmbuf_chain()

rte_pktmbuf_chain()

rte_pktmbuf_linearize()

Fig. 5. Scheme-1 (One linearize after all chain)

subPDU1

subPDU1 subPDU2

rte_pktmbuf_chain()

subPDU1 + subPDU2

rte_pktmbuf_linearize()

subPDU1 + subPDU2 subPDU3

rte_pktmbuf_chain()

subPDU1 + subPDU2 + subPDU3

rte_pktmbuf_linearize()

...

MAC PDU

Fig.6. Scheme-2 (Retptition of chain & linearize)

1425

REFERENCES

[1] https://www.dpdk.org/

[2] https://hackmd.io/@sohailanjum97/SkWE46ywu

[3] 3GPP TS 38.321, “NR; Medium Access Control (MAC) protocol
specification”, Iune, 2022.

[4] DPDK, Programmer;s Guide, Jan, 2021.

Fig. 8. MAC processing time according to Number of MAC subPDU

Fig. 9. MAC processing time according to the TB size

1426

