
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Image Classification on Resource-Constrained
Microcontrollers

1st Seungtae Hong
Intelligent Device & Simulation

Research Section
Electronics and Telecommunications

Research Institute
and

University of Science and Technology
Daejeon, Korea

sthong@etri.re.kr

2nd Gunju PARK
Intelligent Device & Simulation

Research Section
Electronics and Telecommunications

Research Institute
Daejeon, Korea

parkgj@etri.re.kr

 3rd Jeong-Si Kim
Intelligent Device & Simulation

Research Section
Electronics and Telecommunications

Research Institute
Daejeon, Korea

sikim00@etri.re.kr

Abstract—Recently, as IoT devices have become popular, re-
search to perform deep learning in small devices such as micro-
controllers has been attempted. Microcontrollers have very lim-
ited resources compared to edge devices such as mobiles. There-
fore, in order to perform deep learning-based image classifica-
tion in a microcontroller, an optimization technique considering
HW constraints is required. To this end, in this paper, we pre-
sent a method for light weighting a model so that it can be exe-
cuted in a microcontroller, and a process for distributing the
lightweight model to a microcontroller. Finally, it was con-
firmed that image classification can be performed in an actual
microcontroller through STM32F746G-Discovery.

Keywords—Microcontrollers, Deep Learning, Image Classifi-
cation

I. INTRODUCTION
With the progress of IT technology, deep learning

technology is being utilized in a multitude of domains [1][2].
In particular, with the recent widespread use of IoT devices,
research to perform deep learning in micro-devices such as
microcontrollers is being attempted [3].

A microcontroller consists of a CPU, memory, and
input/output features on a single chip. In addition,
microcontrollers have very few available resources, such as
memory (SRAM) within a few hundred KB and flash within
several MB. However, since microcontrollers are very cheap
and consume very little power, they can be used in many real-
life situations.

To this end, this paper proposes an optimization technique
for image classification on resource-limited microcontrollers.
The proposed optimization technique presents a model
conversion technique for deploying a pretrained model in the
server to a microcontroller. In addition, the proposed
optimization method presents a preprocessing method for
optimizing inference speed in microcontrollers. To verify the
optimization method proposed in this paper, image
classification is performed on the Cifar-10 dataset using
TensorFlow Lite for Microcontrollers on the STM32F746G-
Discovery board [4].

II. RELATED WORKS
TensorFlow Lite for Microcontrollers (=TFLM) is a sub-

component of TensorFlow Lite for performing machine
learning on resource-constrained microcontrollers. TFLM
takes as input a model transformed through TensorFlow Lite.
At this time, TensorFlow Lite converts the pre-trained model
to FlatBuffer [5] format. FlatBuffer is a cross-platform
serialization interface proposed by Google. FlatBuffer can be

accessed directly without separate parsing or unpacking, and
has the advantage of being usable on various platforms
without any dependencies.

Since the microcontroller does not have a file system, the
model converted to FlatBuffer is included in the source code
in the form of a C array. The model is then compiled along
with other source code, built in binary form and stored in the
flash on the microcontrollers.

TFLM runs inference on the microcontroller through an
interpreter API in the form of a C/C++ language. For
initialization and control of the microcontroller, the API of the
BSP (Board Support Package) should be used separately from
the interpreter API of TFLM.

III. IMAGE CLASSIFICATION ON RESOURCE-CONSTRAINED
MICROCONTROLLERS

The procedure of the optimization technique for image
classification on a microcontroller is shown in Figure 1.

Fig. 1. The procedures of optimization techniques for image classification

on microcontrollers

TFLM natively takes as input models from TensorFlow
Lite that have been converted from TensorFlow. However,
various model lighting techniques such as pruning and
quantization are currently being released based on PyTorch.
Therefore, the proposed technique proceeds with PyTorch-
based training, pruning, and quantization aware training. The
proposed method uses TinyNeuralNetwork [6] to convert a
PyTorch model that has completed quantization aware

1453979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

training into a TensorFlow Lite model. Finally, TensorFlow
Lite models are converted to C array using the xxd command.
The xxd command is a utility available on Linux and Unix-
like operating systems used to create and manipulate
hexadecimal and binary representations of files.

We used MobileNet v2 [7], which was redesigned to fit the
Cifar-10 dataset, and modified the output channels and
expansion ratio considering the specifications of the
microcontroller. The modified MobileNet v2 has an input size
of 32 * 32 * 3 (width * height * channel) and consists of 16
bottlenecks.

After training is finished, One Shot Channel Pruning [8] is
performed to reduce the parameters of the model. One Shot
Channel Pruning has the advantage of shorter execution time
compared to existing pruning techniques. After pruning, fine-
tuning is performed to improve the accuracy of the model.

In general, quantization techniques are divided into post-
training quantization that can be performed without retraining
and quantization-aware training that performs quantization
while performing training. In this paper, we use quantization-
aware training to mitigate the loss of accuracy due to model
pruning.

To deploy the quantized model to the microcontroller, we
need to convert the model with TensorFlow Lite. To this end,
in this paper, we transform the trained model using Alibaba's
TinyNeuralNetwork. Typically, ONNX (Open Neural
Network Exchange) is used when converting models trained
with PyTorch to TensorFlow Lite. However, while the model
conversion process using ONNX is difficult, the model
conversion process using TinyNeuralNetwork is relatively
easy.

When inference is performed in a microcontroller, the pre-
processing of the input image must be minimized to speed up
the inference. To this end, when converting a PyTorch model
to a TensorFlow Lite model, the input and output of the neural
network use quantized input (=signed int8). That is,
quantization is applied to all inputs and outputs as well as the
hidden layer of the neural network. Through this, each pixel
value of the image obtained from the camera module on the
microcontroller can be directly used as a quantization input.

To deploy a TensorFlow Lite model to a microcontroller,
it must be converted into an array with hexadecimal values
using the xxd command. Figure 2 shows an example of
converting a TensorFlow Lite model to a hexadecimal array
through the xxd command.

Fig. 2. An example of converting a hexadecimal array of TensorFlow Lite

models

Apart from TFLM, BSP (Board Support Package) must be
used to initialize and control the microcontroller. BSP
provides user APIs that can directly control HW such as CPU
clock setting and sensor initialization. In addition, in the
microcontroller, the inference speed can be optimized using

the HW control API of the BSP. For example, STM32
provides cache control APIs (e.g., SCB_EnableICache(),
SCB_EnableDCache()), through which microcontrollers can
improve inference speed.

IV. EXPERIMENTS

A. Experimental Setup
To prove the validity of the proposed technique, we

implemented an image classifier on a representative
development board, STM32F746G-Discovery. Table 1 shows
the HW specifications of STM32F746G-Discovery. To build
the source code for the microcontroller, we used
STM32CubeIDE (ver. 1.11.0) officially provided by STM.
STM32CudeIDE has a built-in C/C++ compiler. We
performed performance evaluation by specifying the -Ofast
option to optimize inference speed.

TABLE I. HW SPECIFICATIONS OF STM32F746G-DISCOVERY

Type Specification

CPU STM32F746NG (ARM Cortex-M7)
- Single Core (216 MHz)

SRAM 320 KB (User SRAM:256KB)

Flash memory 1 MB

Power 3.3 V or 5 V

Supported devices
4.3” LCD display
Micro SD card
On-board ST-LINK/V2-1 debugger/programmer

B. Evaluation Results
STM32F746G-Discovery supports LCD screen and

external micro SD card. In this performance evaluation, the
Cifar-10 test dataset is saved on a micro SD card, and
inference is performed by loading the saved image data. Then,
the inference result is output on the LCD screen.

Figure 3 shows the screen of running the image classifier
on the STM32F746G-Discovery. 10 images randomly
extracted from the Cifar-10 test dataset are stored in the micro
SD card. Inference is performed by sequentially loading
images by pressing user buttons below the LCD screen. Figure
3 shows the screen of running the image classifier on the
STM32F746G-Discovery.

Fig. 3. Screen for performing inference on STM32F746G-Discovery

Table 2 shows the change trend of FLOPs (FLoating point
Operations Per Second) and validation accuracy in the model
conversion process We trained for 300 epochs on the server

1454

and got top-1 accuracy of 92.26%. After training, pruning and
fine-tuning were performed to reduce the weight of the model,
and FLOPs were reduced by 40.04%. On the other hand, the
accuracy after pruning decreased to 87.16%. Therefore, in
order to compensate for the accuracy lost through pruning,
quantization is performed through quantization-aware
training. When quantization was performed through
quantization-aware training, it was confirmed that the
accuracy improved by 1.33% compared to the model with
pruning and fine-tuning.

TABLE II. TRENDS IN FLOPS AND ACCURACY BY MODEL
CONVERSION PROCESS

Step FLOPs Validation Accuracy
(Top-1)

Traing 15,448,512 92.26 %

Pruning + Fine-tuning 9,262,416
(-40.04 %)

87.16 %
(-5.1%)

Quantization-aware
training

9,262,416
(-40.04 %)

88.49 %
(-3.77 %)

Table 3 shows the size difference between SRAM and
Flash depending on whether TFLM is included or not.
Without TFML means that the binary running on the
microcontroller contains only basic BSP and libraries for
loading image files (e.g., FatFs, LibJPEG). If TFLM is
included in binary, it also includes a model for inference.

TABLE III. LIST OF RECOGNIZERS FOR PERFORMANCE EVALUATION

Type SRAM
(Max: 320 KB)

Flash
(Max: 1 MB)

Without TFLM
(including FatFs,
LibJPEG)

4.18 KB (1.3%) 88.89 KB (8.68%)

With TFLM
(including model) 144.94 KB (45.29%) 685.28 KB (66.92%)

In order to perform inference using TFLM, activation
memory for each operation is required. The activation
memory is allocated to the SRAM of the microcontroller. In
contrast, the model converted to hexadecimal is allocated to
flash memory. On the other hand, TFLM uses an interpreter
method to perform inference on various microcontrollers.
Therefore, TFLM requires additional memory for the
interpreter method along with activation memory.

V. CONCLUSION
In this paper, we proposed an optimization technique for

image classification using deep learning in a microcontroller.
Microcontrollers have very limited resources compared to
portable edge devices such as mobiles. Therefore, in order to
perform deep learning-based image classification in a
microcontroller, resource limitations of the microcontroller
must be considered.

In this paper, we presented the model conversion process
to deploy the trained model to the microcontroller. In addition,
it was confirmed that image classification can be performed
through the proposed optimization technique by performing
inference in STM32F746G-Discovery.

We plan to conduct research on performing image
classification on large-sized input data such as the ImageNet
dataset.

ACKNOWLEDGMENT
This research was supported by the Challengeable Future

Defense Technology Research and Development Program
through the Agency For Defense Development(ADD) funded
by the Defense Acquisition Program Administration(DAPA)
in 2022(No.915062201)

REFERENCES
[1] H. H. Bu, N. C. Kim, and S. H. Kim, “Content-based image retrieval

using a fusion of global and local features,” ETRI Journal, vol. 45, no.3,
2023

[2] S. Seo, and H. Jung, “A robust collision prediction and detection
method based on neural network for autonomous delivery robots,”
ETRI Journal, vol. 45, no. 2, 2023.

[3] J. Lin, W. M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, "Mcunet:
Tiny deep learning on iot devices," Advances in Neural Information
Processing Systems (NIPS), 2020

[4] STMicroelectronics, Discovery kit with STM32F746NG MCU,
https://www.st.com/en/evaluation-tools/32f746gdiscovery.html

[5] Google, FlatBuffers, https://github.com/google/flatbuffers
[6] alibaba, TinyNeuralNetwork, https://github.com/alibaba/TinyNeural

Network
[7] chenhang98, mobileNet-v2_cifar10, https://github.com/chenhang98/

mobileNet-v2_cifar10
[8] F. Yu, C. Han, P. Wang, X. Huang, and L. Cui, “Gate trimming: One-

shot channel pruning for efficient convolutional neural networks,”
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2021.

1455

