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Abstract—Recently, as IoT devices have become popular, re-
search to perform deep learning in small devices such as micro-
controllers has been attempted. Microcontrollers have very lim-
ited resources compared to edge devices such as mobiles. There-
fore, in order to perform deep learning-based image classifica-
tion in a microcontroller, an optimization technique considering 
HW constraints is required. To this end, in this paper, we pre-
sent a method for light weighting a model so that it can be exe-
cuted in a microcontroller, and a process for distributing the 
lightweight model to a microcontroller. Finally, it was con-
firmed that image classification can be performed in an actual 
microcontroller through STM32F746G-Discovery. 
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I. INTRODUCTION 
With the progress of IT technology, deep learning 

technology is being utilized in a multitude of domains [1][2]. 
In particular, with the recent widespread use of IoT devices, 
research to perform deep learning in micro-devices such as 
microcontrollers is being attempted [3]. 

A microcontroller consists of a CPU, memory, and 
input/output features on a single chip. In addition, 
microcontrollers have very few available resources, such as 
memory (SRAM) within a few hundred KB and flash within 
several MB. However, since microcontrollers are very cheap 
and consume very little power, they can be used in many real-
life situations. 

To this end, this paper proposes an optimization technique 
for image classification on resource-limited microcontrollers. 
The proposed optimization technique presents a model 
conversion technique for deploying a pretrained model in the 
server to a microcontroller. In addition, the proposed 
optimization method presents a preprocessing method for 
optimizing inference speed in microcontrollers. To verify the 
optimization method proposed in this paper, image 
classification is performed on the Cifar-10 dataset using 
TensorFlow Lite for Microcontrollers on the STM32F746G-
Discovery board [4]. 

II. RELATED WORKS 
TensorFlow Lite for Microcontrollers (=TFLM) is a sub-

component of TensorFlow Lite for performing machine 
learning on resource-constrained microcontrollers. TFLM 
takes as input a model transformed through TensorFlow Lite. 
At this time, TensorFlow Lite converts the pre-trained model 
to FlatBuffer [5] format. FlatBuffer is a cross-platform 
serialization interface proposed by Google. FlatBuffer can be 

accessed directly without separate parsing or unpacking, and 
has the advantage of being usable on various platforms 
without any dependencies. 

Since the microcontroller does not have a file system, the 
model converted to FlatBuffer is included in the source code 
in the form of a C array. The model is then compiled along 
with other source code, built in binary form and stored in the 
flash on the microcontrollers. 

TFLM runs inference on the microcontroller through an 
interpreter API in the form of a C/C++ language. For 
initialization and control of the microcontroller, the API of the 
BSP (Board Support Package) should be used separately from 
the interpreter API of TFLM. 

III. IMAGE CLASSIFICATION ON RESOURCE-CONSTRAINED 
MICROCONTROLLERS 

The procedure of the optimization technique for image 
classification on a microcontroller is shown in Figure 1. 

 
Fig. 1. The procedures of optimization techniques for image classification 

on microcontrollers 

TFLM natively takes as input models from TensorFlow 
Lite that have been converted from TensorFlow. However, 
various model lighting techniques such as pruning and 
quantization are currently being released based on PyTorch. 
Therefore, the proposed technique proceeds with PyTorch-
based training, pruning, and quantization aware training. The 
proposed method uses TinyNeuralNetwork [6] to convert a 
PyTorch model that has completed quantization aware 
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training into a TensorFlow Lite model. Finally, TensorFlow 
Lite models are converted to C array using the xxd command. 
The xxd command is a utility available on Linux and Unix-
like operating systems used to create and manipulate 
hexadecimal and binary representations of files.  

We used MobileNet v2 [7], which was redesigned to fit the 
Cifar-10 dataset, and modified the output channels and 
expansion ratio considering the specifications of the 
microcontroller.  The modified MobileNet v2 has an input size 
of 32 * 32 * 3 (width * height * channel) and consists of 16 
bottlenecks. 

After training is finished, One Shot Channel Pruning [8] is 
performed to reduce the parameters of the model. One Shot 
Channel Pruning has the advantage of shorter execution time 
compared to existing pruning techniques. After pruning, fine-
tuning is performed to improve the accuracy of the model. 

In general, quantization techniques are divided into post-
training quantization that can be performed without retraining 
and quantization-aware training that performs quantization 
while performing training. In this paper, we use quantization-
aware training to mitigate the loss of accuracy due to model 
pruning. 

To deploy the quantized model to the microcontroller, we 
need to convert the model with TensorFlow Lite. To this end, 
in this paper, we transform the trained model using Alibaba's 
TinyNeuralNetwork. Typically, ONNX (Open Neural 
Network Exchange) is used when converting models trained 
with PyTorch to TensorFlow Lite. However, while the model 
conversion process using ONNX is difficult, the model 
conversion process using TinyNeuralNetwork is relatively 
easy. 

When inference is performed in a microcontroller, the pre-
processing of the input image must be minimized to speed up 
the inference. To this end, when converting a PyTorch model 
to a TensorFlow Lite model, the input and output of the neural 
network use quantized input (=signed int8). That is, 
quantization is applied to all inputs and outputs as well as the 
hidden layer of the neural network. Through this, each pixel 
value of the image obtained from the camera module on the 
microcontroller can be directly used as a quantization input. 

To deploy a TensorFlow Lite model to a microcontroller, 
it must be converted into an array with hexadecimal values 
using the xxd command. Figure 2 shows an example of 
converting a TensorFlow Lite model to a hexadecimal array 
through the xxd command. 

 
Fig. 2. An example of converting a hexadecimal array of TensorFlow Lite 

models 

Apart from TFLM, BSP (Board Support Package) must be 
used to initialize and control the microcontroller. BSP 
provides user APIs that can directly control HW such as CPU 
clock setting and sensor initialization. In addition, in the 
microcontroller, the inference speed can be optimized using 

the HW control API of the BSP. For example, STM32 
provides cache control APIs (e.g., SCB_EnableICache(), 
SCB_EnableDCache()), through which microcontrollers can 
improve inference speed. 

IV. EXPERIMENTS 

A. Experimental Setup 
To prove the validity of the proposed technique, we 

implemented an image classifier on a representative 
development board, STM32F746G-Discovery. Table 1 shows 
the HW specifications of STM32F746G-Discovery. To build 
the source code for the microcontroller, we used 
STM32CubeIDE (ver. 1.11.0) officially provided by STM. 
STM32CudeIDE has a built-in C/C++ compiler. We 
performed performance evaluation by specifying the -Ofast 
option to optimize inference speed. 

TABLE I.  HW SPECIFICATIONS OF STM32F746G-DISCOVERY 

Type Specification 

CPU STM32F746NG (ARM Cortex-M7) 
- Single Core (216 MHz) 

SRAM 320 KB (User SRAM:256KB) 

Flash memory 1 MB 

Power 3.3 V or 5 V 

Supported devices 
4.3” LCD display 
Micro SD card 
On-board ST-LINK/V2-1 debugger/programmer 

B. Evaluation Results 
STM32F746G-Discovery supports LCD screen and 

external micro SD card. In this performance evaluation, the 
Cifar-10 test dataset is saved on a micro SD card, and 
inference is performed by loading the saved image data. Then, 
the inference result is output on the LCD screen. 

Figure 3 shows the screen of running the image classifier 
on the STM32F746G-Discovery. 10 images randomly 
extracted from the Cifar-10 test dataset are stored in the micro 
SD card. Inference is performed by sequentially loading 
images by pressing user buttons below the LCD screen. Figure 
3 shows the screen of running the image classifier on the 
STM32F746G-Discovery. 

 
Fig. 3. Screen for performing inference on STM32F746G-Discovery 

Table 2 shows the change trend of FLOPs (FLoating point 
Operations Per Second) and validation accuracy in the model 
conversion process We trained for 300 epochs on the server 
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and got top-1 accuracy of 92.26%. After training, pruning and 
fine-tuning were performed to reduce the weight of the model, 
and FLOPs were reduced by 40.04%. On the other hand, the 
accuracy after pruning decreased to 87.16%. Therefore, in 
order to compensate for the accuracy lost through pruning, 
quantization is performed through quantization-aware 
training. When quantization was performed through 
quantization-aware training, it was confirmed that the 
accuracy improved by 1.33% compared to the model with 
pruning and fine-tuning. 

TABLE II.  TRENDS IN FLOPS AND ACCURACY BY MODEL 
CONVERSION PROCESS 

Step FLOPs Validation Accuracy 
(Top-1) 

Traing 15,448,512 92.26 % 

Pruning + Fine-tuning 9,262,416 
(-40.04 %) 

87.16 % 
(-5.1%) 

Quantization-aware 
training 

9,262,416 
(-40.04 %) 

88.49 % 
(-3.77 %) 

 

Table 3 shows the size difference between SRAM and 
Flash depending on whether TFLM is included or not. 
Without TFML means that the binary running on the 
microcontroller contains only basic BSP and libraries for 
loading image files (e.g., FatFs, LibJPEG). If TFLM is 
included in binary, it also includes a model for inference. 

TABLE III.  LIST OF RECOGNIZERS FOR PERFORMANCE EVALUATION 

Type SRAM 
(Max: 320 KB) 

Flash 
(Max: 1 MB) 

Without TFLM 
(including FatFs, 
LibJPEG) 

4.18 KB (1.3%) 88.89 KB (8.68%) 

With TFLM 
(including model) 144.94 KB (45.29%) 685.28 KB (66.92%) 

 

In order to perform inference using TFLM, activation 
memory for each operation is required. The activation 
memory is allocated to the SRAM of the microcontroller. In 
contrast, the model converted to hexadecimal is allocated to 
flash memory. On the other hand, TFLM uses an interpreter 
method to perform inference on various microcontrollers. 
Therefore, TFLM requires additional memory for the 
interpreter method along with activation memory. 

V. CONCLUSION 
In this paper, we proposed an optimization technique for 

image classification using deep learning in a microcontroller. 
Microcontrollers have very limited resources compared to 
portable edge devices such as mobiles. Therefore, in order to 
perform deep learning-based image classification in a 
microcontroller, resource limitations of the microcontroller 
must be considered. 

In this paper, we presented the model conversion process 
to deploy the trained model to the microcontroller. In addition, 
it was confirmed that image classification can be performed 
through the proposed optimization technique by performing 
inference in STM32F746G-Discovery. 

We plan to conduct research on performing image 
classification on large-sized input data such as the ImageNet 
dataset. 
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