
Secure Dimensionality Reduction: Applying Linear
Discriminant Analysis over the TFHE
Homomorphic Encryption Scheme*

Geonwoo Jeon
School of Cybersecurity

Korea University
Seoul, Republic of Korea
ajwwjsrjsdn@korea.ac.kr

Joon Soo Yoo
School of Cybersecurity

Korea University
Seoul, Republic of Korea

sandiegojs@korea.ac.kr

Baekkyung Song
School of Cybersecurity

Korea University
Seoul, Republic of Korea
baekkyung777@korea.ac.kr

Mi Yeon Hong
School of Cybersecurity

Korea University
Seoul, Republic of Korea
hachikohmy@korea.ac.kr

Ji Won Yoon
School of Cybersecurity

Korea University
Seoul, Republic of Korea
jiwon yoon@korea.ac.kr

Abstract—In the context of the proliferating AI landscape,
driven by entities like ChatGPT, the demand for extensive data
utilization for training has surged, raising concerns about unau-
thorized data aggregation and privacy breaches. Paradoxically,
this surge in data consumption has raised a critical concern—
the breach of privacy stemming from unauthorized data aggre-
gation. Sensitive data categories, including credit card details,
medical records, and geographical locations, are particularly
vulnerable to misuse. Homomorphic Encryption (HE), a post-
quantum attack-resistant cryptographic technique, addresses this
concern by enabling secure computations on encrypted data.
However, HE’s potential is hindered by limitations in evaluation
speed, particularly evident in high-dimensional data analysis.
This paper introduces contributions, including efficient inverse
matrix computation, tailored eigenvector extraction via the power
method for the TFHE scheme, and eigenvalue calculation using
the Rayleigh quotient within TFHE. The feasibility of applying
LDA in the encrypted domain is demonstrated using Fast Fully
Homomorphic Encryption over the Torus (TFHE) scheme.

Index Terms—Homomorphic Encryption, Linear Discriminant
Analysis, TFHE, Newton’s method, Power method

I. INTRODUCTION

In the current landscape, the widespread emergence of AI
technologies, as demonstrated by entities like ChatGPT and
AlphaGo, has led to a heightened need for substantial data
utilization, primarily for training purposes. Paradoxically, this
surge in data consumption has given rise to a significant
concern – the violation of privacy resulting from the unau-
thorized accumulation of data. A notable portion of this data
is collected without obtaining the necessary consent from data

This work was supported by an Institute of Information & Communications
Technology Planning Evaluation (IITP) grant funded by the Korea government
(MSIT) (No. 2021-0-00558-003, Development of National Statistical Analysis
System using Homomorphic Encryption Technology).

providers or users. Importantly, sensitive data categories, in-
cluding elements such as credit card details, patients’ medical
records, and geographical location information, are particu-
larly susceptible to potential misuse by large corporations.

Homomorphic Encryption (HE) is a cryptographic tech-
nique enabling computation on encrypted data, resilient against
post-quantum attacks. HE effectively counters the unautho-
rized aggregation of sensitive cloud-based information, as all
data is processed in an encrypted state. This approach ensures
user data confidentiality while facilitating cloud services. Con-
sequently, advancements in Homomorphic Encryption technol-
ogy hold the promise of averting personal information leaks,
alleviating concerns regarding data privacy.

While HE technology holds significant promise, it faces
a notable limitation in terms of evaluation speed. To illus-
trate, homomorphic gates such as AND and XOR demand
approximately 13 microseconds on a single-core personal
computer. This issue is exacerbated when dealing with data
analysis techniques that involve high-dimensional data pro-
cessing. Employing HE for such high-dimensional data anal-
ysis proves impractical due to excessive time requirements.
Consequently, addressing the challenges of high-dimensional
data analysis entails the utilization of statistical techniques
such as Principal Component Analysis (PCA) [1] and Linear
Discriminant Analysis (LDA) [2]. These techniques effectively
reduce the dimensionality of the data while preserving a
significant portion of the underlying information.

This paper demonstrates the application of LDA in the
encrypted domain, aimed at reducing high-dimensional en-
crypted data into a more manageable format conducive to
efficient post-LDA data analysis. Specifically, the study em-
ploys Fast Fully Homomorphic Encryption over the Torus
(TFHE) [10], a promising HE scheme, to showcase the fea-

1462979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

sibility of implementing dimensionality reduction techniques
within the encrypted realm. The establishment of core op-
erations, comprising four fundamental functions and non-
linear counterparts, finds its basis in existing literature [3],
[22]. Employing the homomorphic gates accessible within the
TFHE library, we successfully instantiated these operations.

In summary, our paper introduces the following key contri-
butions:

• We demonstrate an efficient approach to compute the
inverse matrix of a square matrix within the encrypted
domain. Our method employs Newton’s method, deviat-
ing from the commonplace Gaussian elimination used in
unencrypted scenarios.

• We present an effective methodology to extract eigenvec-
tors through the power method, meticulously tailored for
the TFHE scheme.

• We propose an adept technique for calculating eigenval-
ues within the TFHE scheme, employing the Rayleigh
quotient.

• We showcase the practical implementation outcomes of
applying LDA across varying dimensions and data quan-
tities. Our results substantiate the feasibility of LDA’s
dimensional reduction within the encrypted domain.

Outline. The paper’s structure is organized as follows: In
Section II, we offer background insights encompassing ho-
momorphic encryption, the building blocks realized through
TFHE, and the essence of LDA. We proceed by discussing
related works centered around dimensional reduction within
the encrypted domain. Subsequently, our model is elaborated
upon, outlining the interaction protocol governing interactions
between the client and server. The subsequent section in-
troduces algorithms designed for specific tasks, such as the
computation of inverses, eigenvalues, and eigenvectors, all
tailored to the TFHE scheme. Moving forward to Sections VI
and VII, we present an in-depth exposition of our experi-
mental methodology and the resultant outcomes. Ultimately,
we conclude with a comprehensive discussion and concluding
remarks.

II. BACKGROUND

A. Homomorphic Encryption (HE)

1) HE basic: In 1978, Rivest et al. [9] introduced the
concept of HE, which capitalizes on the group homomorphism
property [5]. To elaborate, HE exploits the characteristic that
the outcome of a computation between plaintexts, once en-
crypted, remains equivalent to the outcome of the computation
between ciphertexts.

In the realm of HE, security relies on the noise parameter
within the ciphertext. However, the accumulation of noise
post each evaluation causes the ciphertext to lose validity
at a certain noise threshold. Consequently, the HE scheme
gained substantial prominence, especially following Gentry’s
pioneering work [6] in 2009. Gentry introduced Fully Ho-
momorphic Encryption (FHE) capable of managing ciphertext
noise growth. This breakthrough enabled the evaluation of

arbitrary boolean circuits, in contrast to Leveled Homomorphic
Encryption (LHE) [7], [8], which is constrained to a fixed
circuit depth.

2) Boolean evaluation and fixed-point arithmetic: We per-
formed homomorphic encryption of plaintext bits based on the
TFHE schemes [10] and used a fixed-point number system
in our research. Specifically, we assigned r

2 , r
2 − 1, and 1

bit for integers, decimals, and signed bits, respectively. The
encryption of each bit is designated in the same position as
in the plaintext. In consequence, the values between plaintext
and its corresponding ciphertext are precisely equal.

Next, we constructed various FHE operations like four fun-
damental arithmetic operations from the combination of FHE
bootstrapping gates (AND, OR, XOR, and so on) provided
by the TFHE library. In order to grasp a fully-understanding
of our approach, interested readers should refer to [22]. The
LDA algorithm is implemented utilizing the basic operations
designed as in [22].

B. Linear Discriminanat Analysis (LDA)
LDA is a generalization of Fisher’s linear discriminator [11],

a method for dimensionality reduction and classification by
projection from high-dimensional data onto a low-dimensional
data. The LDA’s goal [12] is to find a linear transformation
that maximizes how the classes are separated in the reduced
dimensional space by the projection. Algorithm 1 elaborates
details of LDA procedure.

Algorithm 1: General Linear Discriminant Analysis :
Input: data D = {(xj , yj)}nj=1

Output: dominant eigenvector wa,b, eigenvalue λa,b

1 Di ← {(xj | yj = ci, j = 1, . . . ,n)}, i = 1, . . . , k //
class-specific subsets

2 µi ← mean(Di), i = 1, . . . , k // class means
3 Ba,b ← (µa − µb)(µa − µb)

T for 1 ≤ b < a ≤ k //
between-class scatter matrix

4 B ← Σ Ba,b // between-class scatter matrix
5 Zi ← Di − 1ni

µT
i , i = 1, . . . , k // center class matrices

6 Si ← ZT
i Zi, i = 1, . . . , k // class scatter matrices

7 S ← Σk
i=1Si // within-class scatter matrix

8 λ,w ← eigen(S−1B) // compute dominant
eigenvector

The central challenge of LDA arises in step 7 of Algo-
rithm 1. Achieving reduced-dimensionality data hinges on
executing two primary operations: matrix inversion and matrix
eigenpair extraction. While several approaches exist for these
tasks, the necessity to operate within the encrypted domain
requires careful consideration when selecting suitable algo-
rithms.

III. RELATED WORK

A. LDA within Paillier Cryptosystem
A work by Khodaparast et al. [13] performed LDA in

the Paillier cryptosystem that supports the evaluation of ci-
phertexts using its homomorphic property. In terms of speed,

1463

Fig. 1. An overview of our model. The model assumes two-party compu-
tation over the TFHE scheme. The server evaluates the LDA algorithm over
the encrypted data matrix.

[16] the Paillier cryptosystem has the advantage of being fast
overall because it encrypts quickly. However, this needs to be
compared with FHE. The Paillier cryptosystem could support
homomorphic addition and multiplication within limited num-
ber. However, FHE enables both homomorphic addition and
multiplication without the limited number of operation. Thus,
in terms of homomorphic evaluation, it can be seen that FHE
is more appropriate for evaluating LDA than the Paillier cryp-
tosystem as LDA requires numerous matrix multiplications.

B. Theoretical construction of LDA

The work presented in [14] primarily demonstrates the theo-
retical framework of LDA within the FHE domain. In contrast,
our paper places greater emphasis on practical application,
showcasing the efficient implementation of LDA utilizing the
TFHE scheme.

C. Dimensionality Reduction Technique Using FHE

Principal Component Analysis (PCA) is one of the popular
dimensionality reduction techniques along with LDA. It aims
to reduce the dimensionality of the dataset through maximize
the variance of the data along the principal components. A
work by Panda et al. [20] adopted a CKKS scheme that
supports the approximate computation on complex numbers
by power method in PCA. This approach allows vector nor-
malization to be performed using an iterative algorithm of the
inverse square root function.

IV. OUR MODEL

Our proposed model assumes non-interactive two-party
computation scenario (see Fig. 1). In this scenario, the client
uses TFHE to evaluate encrypted data. The security is based on
the hardness of Learning with Errors (LWE) assumption [21].

A. Model Protocol.

Client. A client encodes the data and encrypts the encoded
data using the secret key sk to generate the LWE ciphertext.
Thereafter, the generated ciphertext is delivered to the server.
Server. The server performs the LDA algorithm on the pro-
vided LWE ciphertext using the following steps:

1) Calculation of the mean for each class matrix.
2) Computation of the between-class scatter matrices be-

tween the different class mean matrices.
3) Calculation of the center class matrices from the class

means.
4) Computation of the class scatter matrices center class

matrices.
5) Calculation of the within class scatter matrices from the

class scatter matrices.
6) Evaluation of eigenvalues and eigenvectors using the

Newton’s method and the power method.
7) Extraction of the dominant eigenvector.
8) Finally, the server sends the resulting processed data

back to the client.
Client. The client decrypts with the secret key sk and decodes
the received result for further analysis or utilization.

V. PROPOSED METHOD

A. Newton’s method

Newton’s method is an algorithm used to find the inverse
of a given matrix. We used this algorithm to complete the
expression to find the inverse of the within-class scatter
matrix. In fact, the inverse matrix is calculated using Gaussian
elimination. Therefore, in order to accurately obtain the inverse
matrix, it is necessary to use the Gaussian elimination instead
of Newton’s method. However, it is hard to express finding
the inverse matrix by Gaussian elimination due to use TFHE.
Thus, it is required.

Algorithm 2: Newton’s Method:
Input: the given square matrix A
Output: the inversed square matrix A−1

1 AT ← TFHE.Transpose(A) // Find AT .
2 AAT ← TFHE.MatMult(A,AT) // Calculate AAT .
3 trace ← TFHE.Trace(AAT) // Find the trace of AAT .
4 e1 ← TFHE.P2C(1) // Make 1 ciphertext.
5 α ← TFHE.Div(e1, trace) // Calculate 1/trace = α.
6 B ← TFHE.ScalarMult(α,AT) // Calculate

B = α×AT .
7 Let I2 be an matrix such that the matrix has the

doubled elements of identity matrix.
8 for i = 1, . . . , t′ do
9 AB ← TFHE.MatMult(A,B) // Multiply matrices

A and B.
10 T ← TFHE.MatSub(I2,AB) // Subtract I2 and

AB.
11 B ← TFHE.MatMult(B,T) // Multiply matrices B

and T.

In Algorithm 2, there is something unusual. In fact, the
Newton’s method for inverse matrix [17] needs eigenvalue
as α. The details are as follows. By using Gerschgorin’s
Theorem, we know that, λ1(AAT) is bounded by the maxi-
mum absolute value row sum of AAT , that is, λ1(AAT) ≤
maxi∈{1,...,n}Σ

n
j=1 | bij |. Thus, letting R = Σn

j=1 | bij |, we

1464

can select α according to, α ∈ (0, 2
R). Therefore, we selected

the trace value as α.

B. Power method

The power method [18] is an algorithm used to find the
eigenvector for a given matrix A. Let the initial vector has all
elements of 1. For the efficient implementation, we replaced
them with sums of each row’s elements instead of performing
matrix multiplication in the first attempt. Subsequent attempts
used the matrix multiplication. In fact, in the normalizing
step, dividing to the magnitude of the vector is recommended.
However, the dividing the vector to the magnitude has a lot
of time, so we replace it by dividing the vector to its element
that has the absolute maximum.

Algorithm 3: Power method:
Input: the given square matrix A
Output: approximated eigenvector xt

1 x0 = [1 1 . . . 1]T // Choose the nonzero initial
vector x0.

2 for i = 1, . . . , t do
3 xi ← TFHE.MatMult(A,xi−1) // Multiply matrices

A and xi−1.
4 Let mi be the element that has absolute maximum

value of xi.
5 xi ← TFHE.ScalarMult(1

mi
,xi) // Divide xi by

the maximum element of xi.
6 xt // We have approximate xt as a dominant

eigenvector of the matrix A.

C. Rayleigh quotient

Rayleigh quotient [19] is an algorithm used to find the
eigenvalue of a given matrix. In fact, performing inner product
in the encrypted implementation takes a lot of time, so we
obtained eigenvalue in the following modified form such that
do not perform inner product instead of the original form.

Algorithm 4: Rayleigh quotient:
Input: the given square matrix A and the eigenvector

x
Output: corresponding eigenvalue λ

1 Ax // Multiply matrices A and x.
2 Ax · x // Inner product Ax and x.
3 x · x // Inner product x and x.
4 λ = Ax·x

x·x // Divide Ax · x by x · x.

Let t be the iteration number of the power method finding
eigenvector x. And let x′ be the eigenvector obtained by the
power method for the iteration number t−1. We obtained the
eigenvalue by dividing the first element of Ax′ (the multiple
of the matrix A and x′) to the first element of x′.

Algorithm 5: Efficient Rayleigh quotient:
Input: the given square matrix A and the iteration

time t
Output: corresponding eigenvalue λ

1 x′ ← TFHE.Eigenvector(A, t− 1) // Find the
eigenvector of given A and the iteration time t− 1.

2 Ax′ ← TFHE.MatMult(A,x′) // Multiply matrices A
and x′.

3 λ ← TFHE.Div(Ax′[1],x′[1]) // Divide the first
element of Ax′ by the first element of x′.

VI. EXPERIMENT

A. Experiment Setting

1) Environment Setting: Our research was conducted on
a system with Intel i5-12400 CPU working on 2.5 GHz
with 12 cores, 16GB RAM, and running Ubuntu 20.04 LTS.
Additionally, we employed version 1.1 of the TFHE library
for the implementation of the PCA algorithm.

2) Parameter: We randomly set all values in the range
(0, 1) for data matrix. Subsequently, we tested the time based
on the varying dimension ranging from 2 to 10.

B. Power Method

We achieved an efficient implementation of the power
method as follows. In the initial iteration of the power method,
matrix-vector multiplication is a requisite operation. Given the
initial vector’s unitary composition, the matrix multiplication
outcome simplifies to the summation of matrix columns.
Consequently, to alleviate computational overhead, we opted
for ciphertext addition as a substitute for resource-intensive
multiplication operations amidst ciphertexts, thereby enhanc-
ing computational efficiency. We compared the timing analysis
based on our optimization technique and the result is presented
in Table I. Note that we varied the matrix size from 2 to 5 for
comparison.

C. Linear Discriminant Analysis

We supposed the number of classes k = 2 and the number
of iteration number for Newton’s method t′ = 5. First, we
let each of class have ni = 2 for i = 1, 2 and d = 2, and
performed the experiment. And we performed the experiment
with ni = 2, 3, 4 and d = 2, 3, 4. For the simple comparison,
we let the iteration number for power method t = 5. Because
the experiment needs t−1th eigenvector to find the eigenvalue,
t must be larger than 1. And to check if the change of ni and
d are reflected in the experiment, we supposed the situation
with the change of ni, the situation with the change of d and
the situation with both of the change of ni and d as 8 cases .
Especially without loss of generality, we compare the situation
with the change of n1 and the situation with the change of both
ni. For the comparison with the real LDA value, we let the
iteration number t = 5 in the experiment.

Also, we set n1 and n2 differently under the condition of
the dimension d = 4 and the iteration number t = 5. Since in

1465

the LDA process, the data matrix of each class does not need
to have the same ni, we could set the ni differently. Thus in
order to compare the time when different ni were set and the
time when same ni were set, we operated LDA with different
n1 and n2 - (2, 3), (2, 4), and (3, 4). Then, we compared the
consumed time of the operation with the consumed time of
the former operation.

VII. RESULT

A. Efficient Design of Power Method for TFHE

In Table I, we set the iteration number t′ to be 3 and
compared their execution time.

TABLE I
EXECUTION TIME OF POWER METHOD IN EACH OF MATRIX WITHIN TFHE

SCHEME. THE EXECUTION TIME IS MEASURED IN MINUTES.

2× 2 3× 3 4× 4 5× 5

Original method (m) 13.004 21.271 33.045 47.063

Method we suppose (m) 11.770 17.699 25.926 36.051

Difference (m) 1.233 3.572 7.119 11.012

Ratio (%) 9.4847 16.7936 21.5441 23.3981

The processing time for 2×2 matrix in Table I amounted to
13.004 minutes in the case of using the original method, while
the processing time for the matrix amounted to 11.770 minutes
in the case of using the supposed method. The difference
between the two methods for the matrix is 1.233 minutes,
which accounted for 9.4847 percent of the total processing
time of using the original method.

The time it took to process a 3 × 3 matrix, as indicated
in Table I, was 21.271 minutes when using the conventional
approach. However, when employing the alternative method,
the processing time was reduced to 17.699 minutes. The
disparity between the two methods for the matrix was 3.572
minutes, constituting 16.7936 percent of the total processing
time with the conventional approach.

According to the data in Table I, the processing time for a
4 × 4 matrix was 33.045 minutes using the original method,
whereas, with the supposed method, it reduced to 25.926
minutes. The variation between the two methods for the matrix
was 7.119 minutes, representing 21.5441 percent of the total
processing time with the original method.

The Table I shows that processing a 5 × 5 matrix took
47.063 minutes using the conventional method, but when the
alternative method was applied, the processing time decreased
to 36.051 minutes. The difference between the two methods
for the matrix amounted to 11.012 minutes, which accounted
for 23.3981 percent of the total processing time with the
conventional method.
Timing Analysis. It can be seen that the time taken to obtain
the eigenvector by applying the power method we proposed
was much reduced compared to when the eigenvector was
obtained by applying the existing power method. In particular,
it can be seen that as the distance increases, the decreasing
ratio increases. The ratio will be smaller as the iteration

number increases, but the ratio comparison between square
matrices of different sizes is still valid. Therefore, this means
that the time required to operate the LDA for a sufficiently
large distance number can be significantly reduced by the
power method we supposed.

B. LDA Evaluation in Encrypted Domain

The values for each matrix were chosen randomly using
the approach suggested by the experiment, in the same way
as former subsection. As suggested by experiment, LDA was
operated in nine cases, and the time taken was measured.
We also operated LDA for matrices with one of the different
matrices, d = 4, and n1 = 3 and n2 = 5, to measure the time
taken. The iteration number t′ is 5.

TABLE II
EXECUTION TIME OF LDA IN EACH OF MATRIX WITHIN TFHE SCHEME.

THE EXECUTION TIME IS MEASURED IN MINUTES.

n = 2 n = 3 n = 4

d = 2 88.0827 88.2700 95.4732

d = 3 255.9794 251.6964 259.5779

d = 4 528.7798 542.8419 560.4587

The processing time for 2×2, 2×3, 2×4 matrices in Table II
are 88.0827 minutes, 88.2700 minutes, 95.4732 minutes for
each. The processing time for matrices of size 3 × 2, 3 × 3,
and 3 × 4 in Table is 255.9794 minutes, 251.6964 minutes,
and 259.5779 minutes, respectively.

Also, it took 528.7798 minutes to process 4 × 2 matrices,
542.8419 minutes to process 4 × 3 matrices, and 560.4587
minutes to process 4× 4 matrices. Without loss of generality,
under the d = 4 and the iteration number t = 5, from n1 = 3
matrix and n2 = 5 matrix, the processing time is 563.4918
minutes.
Timing Analysis. Except that the values in each matrix are set
at random, the only difference between the data matrices put
in to operate the LDA is that ni and d are different. Therefore,
the measured time is mainly affected by the values of ni and
d of the matrix. According to Table II, both d and ni tend to
take longer to operate LDA. It is similar to what we want to
talk about through the values obtained by setting another ni.
According to the result of the experiment for the matrices with
different ni - 4 × 3 matrix and 4 × 5 matrix, the consumed
time taken is 563.4918 minutes, which is similar to the time
taken in other experiments of d = 4. This supports that d is
the main factor influencing the time required. However, there
is a limitation that more accurate results actually require the
result of substituting more data into the implementation.

It was observed that as the d value increased, the time
required also increased absolutely. On the other hand, it was
observed that an increase in ni value did not absolutely
increase the time required. We would like to examine the
change in the time required as the d and ni values change and
the reason. Considering the method of LDA, it can be inferred
without difficulty. The process of obtaining LDA proceeds in

1466

the manner shown in Algorithm 1. LDA uses mean, addition
between matrices, subtraction, and multiplication. In fact,
addition and subtraction do not have a significant impact on the
time the implementation is progressing. Since the difference in
the values to be divided does not have a significant effect, the
process of obtaining the average also cannot be said to have a
significant effect just because ni increases. Considering these
points, ni does not strictly affect the time required.

Conversely, as the d value changes, the structure of the
between-class scatter matrix and class scatter matrices that are
handled changes. As previously stated, between-class scatter
matrix and class scatter matrix have form d×d. However, the
time to obtain the inverse matrix, eigenvector, and eigenvalue
of the d×d matrix itself is greatly affected because it depends
on the d value. Thus it implies that the time is strongly
affected by finding inverse matrix, eigenvector or eigenvalue
and d value. Therefore, the overall time taken is generally
proportional to d2, since the error exists but is calculated using
the d × d matrix itself in the part calculated with the d × d
matrix, which is the latter part of the LDA implementation.

VIII. DISCUSSION

Limitation. Our experimental results are limited to small
datasets, primarily due to the inherent nature of the TFHE
scheme. The evaluation of a single gate alone necessitates 13
microseconds on a single-core computer. As a result, tasks
involving matrix arithmetic, which forms the foundational
building block of data analysis techniques, incur notable
time overheads. It is crucial to note, however, that the LDA
procedure serves as a pre-processing step. This implies that
once LDA is executed, the reduced data can subsequently
undergo further analysis employing a variety of data analytic
tools.
Future work. The number of classes we have covered is 2,
and the size of the data is small. In addition, the set iteration
number is set as a small value. Therefore, it is necessary to
deal with a larger number of classes and data, and the iteration
number should also be large enough. However, our experiment
serves as a guide for a larger scale experiments.

Moreover, the application of diverse optimization techniques
holds potential. While this work does not encompass such
optimization strategies, their incorporation promises height-
ened speed improvements. Such techniques can significantly
enhance the execution of LDA on high-dimensional data,
paving the way for more efficient analyses.

IX. CONCLUSION

As the collection and processing of data increasingly occur
without the consent of data providers, homomorphic encryp-
tion emerges as a potent solution for such concerns. However,
the slow evaluation speed coupled with the demands of high-
dimensional data analysis necessitate faster approaches. This
paper addresses this by leveraging LDA to effectively diminish
data dimensionality within the encrypted domain, while pre-
serving crucial information. Notably, our approach employs
the TFHE library, a prominent Boolean-based homomorphic

encryption framework. Additionally, we present efficient algo-
rithms for computing matrix inverses and eigenpairs—a core
facet of the LDA technique. Finally, the paper offers empirical
results, showcasing the application of LDA across varying
input matrix sizes.

REFERENCES

[1] Wold, S. & Esbensen, K. & Geladi, P. Principal component analysis.
Chemometrics and intelligent laboratory systems. 2, pp. 37-52 (1987)

[2] Izenman, A. Linear discriminant analysis. Modern multivariate statistical
techniques: regression, classification, and manifold learning. pp. 237-280
(2013)

[3] Yoo, J. & Hwang, J. & Song, B. & Yoon, J. A bitwise logistic regression
using binary approximation and real number division in homomorphic
encryption scheme. Information Security Practice and Experience: 15th
International Conference, ISPEC 2019, Kuala Lumpur, Malaysia, Novem-
ber 26–28, 2019, Proceedings 15. pp. 20-40 (2019)

[4] Song, B. & Yoo, J. & Hong, M. & Yoon, J. A bitwise design and imple-
mentation for privacy-preserving data mining: from atomic operations to
advanced algorithms. Security and Communication Networks. 2019, pp.
1-14 (2019)

[5] Yi, X., Paulet, R. & Bertino, E. Homomorphic encryption. Springer
International Publishing. pp. 27-46 (2014)

[6] , Gentry, C. Fully homomorphic encryption using ideal lattices. Proceed-
ings of the forty-first annual ACM symposium on Theory of computing.
pp. 169-178 (2009)

[7] Fan, J. & Vercauteren, F. Somewhat practical fully homomorphic encryp-
tion. Cryptology ePrint Archive. (2012).

[8] Cheon, J. & Kim, A. & Kim, M. & Song, Y. Homomorphic encryption for
arithmetic of approximate numbers. Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part I 23. pp. 409-437 (2017)

[9] Rivest, R., Shamir, A. & Adleman, L. A method for obtaining digital
signatures and public-key cryptosystems. Communications Of The ACM.
21, 120-126 (1978)

[10] Chillotti, I. & Gama, N. & Georgieva, M. & Izabachène, M. 2020,
TFHE: fast fully homomorphic encryption over the torus. Journal of
Cryptology, 33(1), pp.34-91.

[11] Ye, J. Least squares linear discriminant analysis. Proceedings of the 24th
international conference on Machine learning. pp. 1087-1093 (2007)

[12] Park, C. & Park, H., 2008, A comparison of generalized linear discrim-
inant analysis algorithms. Pattern Recognition, 41(3), pp.1083-1097.

[13] Khodaparast, F., Sheikhalishahi, M., Haghighi, H. & Martinelli, F.
Privacy-preserving LDA classification over horizontally distributed data.
Intelligent Distributed Computing XIII. pp.65-74 (2020)

[14] Arita, S. & Nakasato, S., 2017, Fully homomorphic encryption for
classification in machine learning. 2017 IEEE International Conference
on Smart Computing (SMARTCOMP). pp.1-4

[15] Wu, M. & Zhang, Z., 2010, Handwritten digit classification using the
mnist data set. Course project CSE802: Pattern Classification & Analysis.,
336.

[16] Jost, C., Lam, H., Maximov, A., & Smeets, B. Encryption performance
improvements of the paillier cryptosystem. Cryptology ePrint Archive.
(2015).

[17] Ben-Israel, A., 1965, An iterative method for computing the generalized
inverse of an arbitrary matrix. Mathematics of Computation, 19(91),
pp.452-455

[18] Chu, M. & Watterson, J., 1993, On a multivariate eigenvalue problem,
Part I: Algebraic theory and a power method. SIAM Journal on scientific
computing, 14(5), pp.1089-1106

[19] Victoria, A., Ahmad, M., Ahamad, N. & Lyashenko, V. Algorithmic
research and application using the rayleigh method. (2015)

[20] Panda, S. Principal component analysis using ckks homomorphic en-
cryption scheme. Cryptology EPrint Archive. (2021)

[21] Regev, O., 2009, On lattices, learning with errors, random linear codes,
and cryptography. Journal of the ACM (JACM), 56(6), pp. 1-40

[22] Song, B., Yoo, J., Hong, M. & Yoon, J. A bitwise design and imple-
mentation for privacy-preserving data mining: from atomic operations to
advanced algorithms. Security And Communication Networks. 2019 pp.
1-14 (2019)

1467

