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Abstract—This paper presents an analysis of the window 
effects on the constant false alarm rate (CFAR) techniques. In 
this research, the scale factors for the robust CFAR detectors, 
which are not explicitly defined by theoretical equations, are 
derived by utilizing the Monte Carlo method. To ensure the 
reliability of the implemented Monte Carlo simulations, we 
compare the scale factors between the theory and the 
simulations in cell averaging-CFAR (CA-CFAR). The need for 
a credible adjustment of the scale factor to achieve a consistent 
false alarm probability is confirmed through simulations that 
investigate noise distributions and CFAR thresholds with 
various windows in pulse compression. 
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I. INTRODUCTION 
Recently, the radar field has been continuously researched 

in various IT areas such as aircraft, ships, automobiles, and 
weather forecasting [1]. The fundamental principle of the 
radar systems is to emit signals and then detect the target's 
position through a series of signal processing including pulse 
compression, coherent integration (CI) / non-coherent 
integration (NCI), and threshold calculation using the received 
signals reflected back from the targets. The received signals 
contain not only target signals but also interference signals, 
such as noise and clutter signals from unintended targets. 
Therefore, it is necessary to establish thresholds to distinguish 
target signals from these interferences, and a prominent 
technique for determining such threshold values is constant 
false alarm rate (CFAR). 

Through CFAR techniques, a constant false alarm 
probability can be maintained according to system 
requirements, and the basic CFAR architecture is cell 
averaging CFAR (CA-CFAR) [2]. In addition, various forms 
of robust CFAR techniques have been developed, such as 
greatest ordered CA-CFAR (GOCA-CFAR) [3], Smallest 
Ordered CA-CFAR (SOCA-CFAR)[4], censored-CFAR (CS-
CFAR) [5], [6], trimmed mean-CFAR (TM-CFAR) [7], and 
ordered static-CFAR (OS-CFAR) [8], [9] are used to cope 
with non-homogeneous environments including clutter edge 
false alarm and mutual target masking. These methodologies 
involve calculating relevant statistics for each approach and 
refining the statistics with scale factors to accomplish the false 
alarm rate of system requirements. 

Nevertheless, in radar operation, variations in the number 
of pulses during NCI aimed at achieving a consistent detection 
range within the beam grid, along with changes of windows in 
pulse compression designed to enhence distance resolution 
and signal-to-noise ratio (SNR), can influence the received 
signal data used in CFAR thresholds calculation process, 
leading to fluctuating false alarm rates that differ from the 
system requirements. 

This study employs Monte Carlo techniques to decide 
suitable scale factors for different robust CFAR methods, 
ensuring the required false alarm probability in compliance 
with system specifications. Furthermore, the research 
examines how changes in noise distribution resulting from 
various window variations in pulse compression. The validity 
of this analysis is demonstrated  through the comprehensive 
comparison of noise distributions and CFAR thresholds, 
considering the application of scale factors. 

II. SYSTEM MODEL 
Fig. 1 shows the system block diagram considered in this 

paper. We consider a radar signal processing system which 
incorporates two main steps: the first step utilizes noise-only 
inputs for deriving CFAR scale factors, and the second step 
involves mixed inputs of noise and transmitted signals to 
calculate CFAR thresholds by multiplying the scale factors. 
The detection results can be attained when the signals after 
Doppler processing exceeds the CFAR thresholds in Fig. 1.  

A. Signal Model 
In this system, the received signal is written as 

 () = () + (), (1) 

where ()  is a transmitted signal with Linear Frequency 
Modulation (LFM) waveform [10], and ()  is a complex 
Gaussian noise at time .  
B. Various Windows in Pulse Compression 
 Pulse compression is commonly used to achieve high 
range resolution with wide pulses in the radar operation. 
However, an assortment of windows can be employed to 
alleviate the distortion of waveform edges in such pulse 
compression by the spectral leakage for the finite DFT extent. 
The signal after this processing is represented as 

 () = () ⊛ ()()∗, (2) 

where () is a reference signal like the transmitted signal, 
and () is the window waveform in pulse compression. 
⊛  denotes a convolution operator, and (∙)∗  denotes a 
complex conjugate. 

 

 We utilize the three windows in Fig. 2: 1) Rectangular 
window, 2) Hamming window [11], 3) Blackman-Harris 
window [12]. Note that normalizing the window power to 1 is  

 
Fig. 1. An illustration of the system block diagram. 
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crucial to reduce the scaling effect caused by the windows.  
This normalization allows straightforward signal comparison 
while preserving the total signal energy. 

C. Doppler Processing and CFAR schemes 
The signal after Doppler processing is expressed as 

 ( ) = ℱ()(), (3) 

where () is the window waveform in Doppler processing, 
and ℱ(∙) denotes the fast Fourier transform (FFT) operator. In 
this study, we conduct the Doppler processing with the 
Chebyshev window. 

Then, CFAR techniques are facilitated to determine the 
thresholds for discriminating between targets and noise. 
Further description about CFAR schemes is provided in the 
next section. 

III. ROBUST CFAR ALGORITHMS 
CFAR is a valuable algorithm for analyzing a series of data 

across diverse fields. The fundamental common structure of 
CFAR involves extracting a statistic from the reference cells 
surrounding a cell under test (CUT), and then comparing the 
CUT with the threshold value derived from the statistic. While 
a variety of CFAR methods exist in detail, the following six 
algorithms are implemented as depicted in Fig. 3. 

A. CA-CFAR 
CA-CFAR is one of the most foundational techniques 

among the CFAR algorithms. Initially, a statistical value 
associated with a CUT can be obtained by taking the average 
from reference cells. Subsequently, this computed statistic is  

 
(a)  Time domain  

(b) Frequency domain 

Fig. 2. Characteristics of three windows in pulse compression. 

multiplied by the scale factor of CA-CFAR to derive a 
threshold in contrast with the CUT in accordance with Fig. 
3(a). 

B. GOCA-CFAR 
GOCA-CFAR exhibits similarities with CA-CFAR, albeit 

with distinct differences. In Fig. 3(b), statistics are categorized 
into two types: one is the statistic from lagging reference cells 
and the other is the statistic from leading reference cells. 
Among the two statistics, the larger one is selected for 
determining a threshold. Accordingly, GOCA-CFAR can be 
useful in addressing the conditions with clutter edge false 
alarm in clutter boundaries by sharply increasing the 
interference values [13]. 

C. SOCA-CFAR 
The majority of algorithmic sequence in SOCA-CFAR 

corresponds to that of GOCA-CFAR with the exception of 
choosing the smaller one between the two statistics as shown 
in Fig. 3(c). SOCA-CFAR can be beneficial to restrain the 
mutual target masking in cases that there are other target 
signals within the reference cells [13]. 

D. CS-CFAR 
 CS-CFAR is a strategy that the values of reference cells 
are sorted in ascending order, and then statistics are computed 
by taking the average of the remaining part excluding  the top 
  largest values in the fashion of Fig. 3(d). Through the 
removal of the top elements, we can fulfill the effect of 
moderating the environment as mutual target masking [13] 
like in SOCA-CFAR. 

E. TM-CFAR 
TM-CFAR in Fig. 3(e) is an approach that evaluates the 

mean using the reference cell data after eliminating the  
smallest elements as well as the top   largest elements, 
differing from CS-CFAR. Therefore, by employing TM-
CFAR, it is possible to prevent not only mutual target masking 
but also clutter edge false alarm [13]. 

F. OS-CFAR 
The procedure of OS-CFAR is comparable to that of TM-

CFAR except for the aspect of retaining only the   element 
and discarding the rest. In other words, OS-CFAR is a skill 
that selects the   element in the sorting data of reference 
cells. Thus, there is no necessity for the computation process 
for the acquisition of statistics in OS-CFAR. Similarly to TM-
CFAR, OS-CFAR can yield a limiting influence on both 
mutual target masking and clutter edge false alarm [13]. 

Fig. 3. Block structures of six CFAR procedures. 

               
(a)  CA-CFAR                                                                (b) GOCA-CFAR                                                               (c) SOCA-CFAR 

 
(d)  CS-CFAR                                                                     (e) TM-CFAR                                                                     (f) OS-CFAR 
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IV. SIMIULATION ANALYSIS 
In this section, an analysis of the simulation results is 

furnished, taking into account different configurations of 
CFAR techniques and three windows in pulse compression. 
To this end, we determine the appropriate scale factors at the 
desired false alarm probability by comparing Monte Carlo 
simulation with the theory related to false alarm probability. 

The CFAR parameters used in the simulation are as 
follows. The size of reference window cells is  = 40, and 
guard sizes  is 3 on the both sides of a CUT.  = 14 and 
 = 36 in CS-CFAR and TM-CFAR, and  = 30 in OS-
CFAR. 

A. Scale Factors in Theory and Monte Carlo simulation 
Given a scale factor and the size of reference window 

cells, a closed-form formula exists to calculate the false alarm 
probability in CA-CFAR as follow [13]. 

  = 1 + 
 , (4) 

which means that  is a scale factor. Using (4), we get 

  =  

 − 1. (5) 

 In contrast, such a closed-form expression is notably 
absent in other CFARs. Hence, the scale factors in the most 
cases of CFARs should be estimated with Monte Carlo 
simulation as presented in Fig. 4. 

 We can see that scale factors in the rectangular window 
are identical to those of the theory in Fig. 4(a). In instances 
where the rectangular window is employed, it is resulting in a 
mere change in size by normalizing the window power to 1. 
Consequently, with demonstrating the equivalence of scale 
factor results of the theory and the simulation, we establish the 
credibility of Monte Carlo simulation in this paper. 
Additionally, Fig. 4(b), Fig. 4(c), and Fig. 4(d) show the 
relationship between scale factors and false alarm 
probabilities in the three windows, respectively. 

  Exploiting the data from Fig. 4,  the scale factors with 
false alarm probability of 10 are organized in Table 1. A 
discernible trend of increasing scale factors in Table 1 can be 
identified in the order of rectangular, Hamming, and 
Blackman-Harris window in the similar manner to Fig. 4(a). 
The scale factors form Table 1 are utilized in the subsequent 
simulations. 

B. CFAR Thresholds with Target signals 
Fig. 5 represents the CFAR thresholds with the scale 

factors adjusted to  = 10  for the situation involving a 
signal target. In Fig. 5(a), sharp spikes due to pulse 
compression contribute to clutter edge false alarms across all 
CFARs. Fig. 5(b) showcases the alleviating effect of 
Hamming window, resulting in the mitigation of false alarms 
in the majority of CFARs except for SOCA-CFAR. 
Blackman-Harris window offers the potential to further 
alleviate the signals around the target including SOCA-CFAR 
in Fig. 5(c). Nonetheless, this modification sharpens the 
waveform, causing threshold fluctuations in the vicinity of the 
target area. 

 
(a) Three windows in CA-CFAR  

(b)  Rectangular window 

 
(c)  Hamming window  

(d)  Blackman-Harris window 
Fig. 4. Scale factor versus false alarm probability. 

TABLE I.  SCALE FACTORS IN MONTE CARLO SIMULATION  

CFAR Type 
Window Type 

Rectangular Hamming Blackman-Harris 

CA-CFAR 10.3 11.3 12.5 

GOCA-CFAR 9.4 10.1 10.9 

SOCA-CFAR 12.7 15.3 18.8 

CS-CFAR 14.8 16.1 17.8 

TM-CFAR 10.1 11.0 12.1 

OS-CFAR 8.1 8.9 9.8 

 

The CFAR thresholds for the case of two targets are 
depicted in Fig. 6. CA-CFAR and GOCA-CFAR demonstrate 
a challenging characteristic of struggling to handle mutual 
target masking in Fig. 6(a). Conversely, SOCA-CFAR, CS-
CFAR, and TM-CFAR exhibit a remarkable capability in 
managing the neighboring targets, and it is established that 
OS-CFAR is minimally affected by adjacent targets with the 
derivation of smooth thresholds. 

 Our simulations confirm that clutter edge false alarm is 
prevented by eliminating the   smallest values within the 
reference window during the threshold calculation. 
Correspondingly, removing the   largest values mitigates 
mutual target masking. Among robust CFAR methods, it is 
evident that OS-CFAR approach is most effective in reducing 
the number of false alarms in heterogeneous scenarios. 

 
(a)  Rectangular  

(b)  Hamming  
(c)  Blackman-Harris 

Fig. 5. CFAR thresholds in the single target scenario.  

 
(a)  Rectangular  

(b)  Hamming  
(c)  Blackman-Harris 

Fig. 6. CFAR thresholds in the scenario of dual targets. 
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(a)  Rectangular  

(b)  Hamming  
(c)  Blackman-Harris 

Fig. 7. Noise distibution after Doppler processing and threshold average. 

C. Comparison of the Noise Distributions  
In order to analyze the window effects applied to pulse 

compression about CFAR thresholds and scale factors, we 
conduct an investigation into the noise distribution as 
illustrated in Fig. 7. Examining the probability density 
distributions, it is observed that a more growth in variances 
and the threshold averages of CA-CFAR with the red dashed 
lines because the mean values and the prevalence of smaller 
data values increase in the sequence of rectangular window, 
Hamming window, and Blackman-Harris window. The 
simulation results indicate that CFAR process and the noise 
component are influenced by the distinct characteristics of the 
main lobe width of and the side lobe magnitude in each 
window. As a result, the adjustment of the CFAR scale factor 
is essential for the purpose of acquiring CFAR thresholds that 
match the specified false alarm probability in accordance with 
the specifications. 

V. CONCLUSION 
In this paper, we validate the credibility of our simulations 

through a comparative analysis between scale factors derived 
from theoretical consideration and those obtained via Monte 
Carlo simulations. Moreover, Monte Carlo simulations offer 
suitable scale factors for robust CFAR techniques and diverse 
window configurations in pulse compression, especially in 
situations where theoretical derivation is not feasible. The 
simulation results suggest the necessity of appropriately 
adjusting the scale factors to ensure a consistent false alarm 

probability when applying different windows in radar signal 
processing. Further work involves extending the study to 
estimate efficient parameters including ,  in TM-CFAR 
and  in OS-CFAR under heterogeneous environments. 
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