
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

Adaptive Control of Congestion Window in QUIC

So-Yong Kim
School of Computer Science and

Engineering
Kyungpook National University

Daegu, Korea
thdyd324@gmail.com

Seok-Joo Koh
School of Computer Science and

Engineering
Kyungpook National University

Daegu, Korea
sjkoh@knu.ac.kr

Abstract—The QUIC protocol offers a variety of distinctive

features over TCP, which includes rapid handshaking process,

zero-RTT capabilities, and connection migration. Among these,

the connection migration plays a pivotal role in facilitating

mobility for a myriad of mobile devices. However, the current

implementation of connection migration necessitates the window

size initialization when the IP address changes, such as during

handovers. This leads to a decline in throughput performance. In

this paper, we introduce an adaptive control of congestion window

size when the client undergoes the connection migration due to IP

changes. From the experimentation results, we can see that the

proposed adaptive congestion control scheme provides significant

performance improvement.

Keywords—QUIC, Connection Migration, Congestion Window

I. INTRODUCTION

The QUIC (formerly known as Quick UDP Internet Connection)
protocol has been developed by the IETF [1] as a cutting-edge
transport protocol. The QUIC protocol encompasses numerous
features, including a swift handshake integrated with TLS, Zero-
RTT for transmitting user data during the handshake [2], and the
ability for connection migration.

Nowadays, mobile devices, such as smartphones, tablets,
and laptops, are widely used in the industry. As these devices
are mobile, the operations of maintaining or reestablishing the
connection's state during the connection is very crucial, due to
its significant impact on user experience [3]. Therefore there are
many reach to handle fast handover [4-7] In such scenarios, the
connection migration can be especially valuable. Connection
migration allows clients to sustain the connection's context
regarding user data even when they relocate [1]. Consequently,
if a client switches locations, its IP address might change. In this
situation, while TCP would terminate the connection, QUIC
maintains it through connection migration. This leads to a
distinction in how the two protocols identify connections. TCP
relies on IP addresses and port numbers from both the server and
client pair for identification. However, QUIC uses a connection
ID. Thus, if the IP address or port number changes as the client
relocates, QUIC can still identify the connection.

However, an issue arises when connection migration occurs
due to an IP address change. The current QUIC implementation
encounters decreased throughput because it needs to reinitialize
the current window size, which determines how many packets
can be sent at once. While a change in port number maintains
the window size, often observed in NAT rebinding, an IP

address change might relocate the mobile device to a new
network state. The client might not be aware if the new network
state is stable or favorable.

To tackle this challenge, we propose an adaptive congestion
control scheme for QUIC with the connection migration, in
which the initial congestion window size (cwnd) is adaptively
configured by considering the network conditions of the newly
visited network, rather than by setting to the default value for
the initial cwnd. Our proposed scheme retains a portion of the
cwnd size instead of initializing it, determining the size based on
a rough estimate of the bandwidth state in the new network. If
the new network state significantly improves upon the previous
one, the proposed scheme can mostly retain the window size.
Conversely, if the state deteriorates, the proposed scheme
initializes the window size due to the potential inability to handle
the sending rate in the new network.

This paper is organized as follows. Section 2 present the
proposed adaptive congestion control scheme for QUIC. In
Section 3, we outline our experimental testbed for performance
evaluation and compare the current QUIC scheme with our
proposed scheme. Section 4 concludes this paper by suggesting
avenues for future research.

II. PROPOSED ADAPTIVE CONTROL OF CONGESTION WINDOW

The proposed scheme introduces a method for addressing the
initial congestion window when the client changes its IP address.
Figure 1 illustrates the flow of the proposed scheme in this
particular scenario.

Fig. 1. Process of cwnd migration

1394979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

A server transmits requested data to a client through
STREAM frames in QUIC, based on the current congestion
window. This window represents an approximate bandwidth
estimation in the current network.

While the client receives data from the server, it encounters
a handover event that potentially alters its IP address.
Subsequently, the client initiates path validation by sending a
path challenge frame in QUIC. This process, known as path
validation within QUIC, has twofold: to confirm that the
endpoint can reach the peer via the designated path, and to verify
the peer remains that same despite any changes in the path. In
this context, the client employs path validation to ensure its
ability to reach the server. Upon the server receiving the path
challenge, it promptly responds by transmitting the path
response frame within the QUIC protocol. The path response
contains an identical value, essentially functioning as a nonce,
which mirrors the value found in the path challenge generated
by the sender of the path challenge itself. Upon successful
reception of the path response by the client, the path validation
is deemed successful, signifying that the client can now transmit
data to the server using this verified path.

However, it is important to note that path validation does not
extend to validating a peer's ability to send data in the opposite
direction. This limitation arises due to insufficient entropy and
the potential for spoofing. Consequently, the server also initiates
a path challenge. In this context, the server seeks to assess the
round-trip time along this new path, which may involve utilizing
the default path within the connection with the client.

Once the server receives a path response matching the path
challenge it issued, the server gains the latest round-trip time in
the new network. Additionally, the client proceeds with the
migration of its connection to the new network, having
successfully verified the path. Following the migration of the
connection, the client dispatches Non-probing Frames,
encompassing frame types within QUIC that are not probing in
nature, such as ACK and STREAM frames. It's important to
acknowledge that the server cannot initiate the transmission of
non-probing frames until it receives corresponding non-probing
frames from the client. Consequently, after the server receives
these non-probing frames, it can commence transmitting data
using STREAM frames.

Prior to transmitting frames, the server calculates the initial
congestion window size using the latest round-trip time in the
new network, as illustrated by the following equation:

 cwndnew = max (𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜

 cwndold, cwndinit)

If the current round-trip time in the new network surpasses
the minimum round trip time observed in the previous network,
it suggests the potential for the network's performance to be less
optimal in the new environment compared to the previous one,
despite outward appearances. As a result, the initial window size
is configured with a predetermined value chosen by the QUIC
implementation.

However, if the latest round trip time is shorter than the
minimal round trip time from the previous network, the server
configures the initial congestion window based on the disparity

between these round trip times. In essence, when the difference
is considerable, the server might adopt an almost identical
congestion window size. Conversely, if the difference is
relatively small, the server may opt for the initial value of the
congestion window.

After determining the initial congestion window size for the
new network, the server initiates data transmission at a rate
consistent with this window size.

III. EXPERIMENTATION RESULTS

A. Testbed setup for experimentation

Figure 2 depicts the testbed established to assess the proposed
scheme. A router was configured to establish distinct paths to
the server, which is connected to the KNU University Network.
Additionally, we configured the smartphone to access the SKT
5G network through Ethernet tethering.

Fig. 2. Testbed configuration for experimentation

The KNU network environment encompasses a network
bandwidth ranging from 150 Mbps to 200 Mbps, exhibiting a 0%
packet loss rate, and an average round-trip time (RTT) spanning
from 1.7ms to 3.5ms. The routers employed included the ASUS
RT-AX55 and the IpTIME A8004T models. Furthermore, the
SKT 5G network environment features a network with speeds
ranging from 100 Mbps to 150 Mbps, with a packet loss rate
varying between 0% and 5%. The average round-trip time
within this network environment ranges from 27ms to 48ms.

We employed the Chromium QUIC transport module [8]
and application on Ubuntu 20.04 with Linux kernel version
5.15.0-52. The STREAM frame typically consists of 1,250 bytes.
Throughout data transmission, network handover events occur.
To manage congestion, we employed the CUBIC algorithm [9],
the default congestion control algorithm in Chromium.

B. Comparison of Congestion Window Size

Figure 3 depicts the congestion window size over the course of
the experiment, representing a portion of the total transmission.
During the experiment, "cwnd-initial" refers to the initial value
of the congestion window, which is set to 32 as determined by
Chromium when the network path undergoes a change.
Conversely, "cwnd-migration" pertains to the proposed scheme,
involving the migration of a portion of the previous network's
congestion window size.

A handover event takes place at the 200 ms mark within the
experiment timeline. Furthermore, in this experiment, we
performed a handover from the SKT 5G network to the KNU
network. Additionally, each value presented in the experiment
timeline is an average derived from a total of 10 experimental
runs.

1395

Fig. 3. Trace of congestion windows in two schemes

As the handover occurred, our proposed scheme maintained
a relatively stable initial window size, slightly lower than the
size prior to the handover event. Notably, the congestion
window size for the new path reached around 86% of the size
for the old path in this context. After the handover, our
observations underscored the proposed scheme's agility in
adjusting the congestion window size to match current
bandwidth conditions, surpassing the performance of the
existing scheme. This was evident in the larger window size of
the proposed scheme between 200ms and 250ms compared to
the existing scheme. As a result, we observed the proposed
scheme achieving a stable window size faster than the existing
one.

C. Comparison of Handover Thoughput

To compare the performance between the two schemes, we
measured the handover throughput from the start of the
handover until 100ms afterward. Figure 4 shows the handover
throughputs for the existing cwnd-init scheme and the proposed
cwnd-migration scheme.

Fig. 4. Trace of congestion windows in two schemes

We observed a nearly doubled throughput in the proposed
scheme, attributed to its capability to initiate data transfer at a
rate closely aligned with the previous network's rate. We
hypothesize that if the bandwidth difference were even greater
than what our current testbed indicates, the proposed scheme
might yield even higher throughput compared to the existing
scheme.

IV. CONCLUSIONS WITH FUTURE WORKS

This paper outlines our approach to maintaining consistent
window sizes in QUIC despite IP changes. We address scenarios
like IP changes during server data reception due to handovers.
We introduce an equation to maintain window sizes from the
previous network configuration. Additionally, we detail our
performance evaluation setup, comparing our proposed scheme
to an existing one. Our results reveal that the proposed scheme
outperforms the existing approach. However, relying solely on
single path validation for bandwidth assessment might be
inadequate due to the limitation that a single round-trip time may
not accurately depict the new network's bandwidth.

Thus, our upcoming research will focus on enhancing
bandwidth measurement methods by employing specific
measurement intervals after an IP change for more accurate
results. We will also explore path selection policies, especially
for clients with diverse paths through various network interfaces.
Additionally, we'll compare this with MPQUIC, a protocol that
utilizes multiple paths for data transfer [10].

Notably, we plan to conduct tests for our future research in
an ultra-low latency SDN (Software-Defined Networking)
network, allowing us to evaluate streaming service performance
under ideal network conditions.

ACKNOWLEDGMENT

This work was supported by the Technology Innovation
Program (20009633) funded by the Ministry of Trade, Industry
& Energy (MOTIE, Korea) and Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education
(NRF2021R1I1A3057509).

REFERENCES

[1] IETF Request for Comments 9000, QUIC: A UDP-based Multiplexed and
Secure Transport, May 2021.

[2] IETF Request for Comments 9001, Using TLS to Secure QUIC, May 2021.

[3] A. C. -F. Chan, et al., "Impacts of handoff on TCP performance in mobile
wireless computing," IEEE International Conference on Personal
Wireless Communications, Mumbai, India, 1997, pp. 184-188.

[4] V. Tiwari, S. Kansal and A. Gaiwak, "Performance evaluation of TCP
variants using Media Independent Handover in heterogeneous network,"
2010 International Conference on Computer and Communication
Technology (ICCCT), Allahabad, India, 2010, pp. 367-370.

[5] WonSeck Jung, SangWoo Son and ByungHo Rhee, "A study of enhanced
TCP for vertical Handover using explicit congestion notification (ECN),"
2011 Third International Conference on Ubiquitous and Future Networks
(ICUFN), Dalian, China, 2011, pp. 305-308.

[6] S. Pack, et al., "Fast-handoff support in IEEE 802.11 wireless networks,"
IEEE Communications Surveys & Tutorials, Vol. 9, No. 1, pp. 2-12, First
Quarter 2007.

[7] Y. -S. Chen, et al., "DeuceScan: Deuce-Based Fast Handoff Scheme in
IEEE 802.11 Wireless Networks," IEEE Transactions on Vehicular
Technology, Vol. 57, No. 2, pp. 1126-1141, March 2008.

[8] The Chromium Project, QUIC: a multiplexed stream transport over UDP,
2023, Available: www.chromium.org/quic.

[9] IETF Request for Comments 8312, CUBIC for Fast Long-Distance
Networks, February 2018.

[10] IETF QUIC Working Group, Multipath Extension for QUIC, draft-ietf-
quic-multipath-03, October 2022

1396

