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Abstract—The QUIC protocol offers a variety of distinctive 

features over TCP, which includes rapid handshaking process, 

zero-RTT capabilities, and connection migration. Among these, 

the connection migration plays a pivotal role in facilitating 

mobility for a myriad of mobile devices. However, the current 

implementation of connection migration necessitates the window 

size initialization when the IP address changes, such as during 

handovers. This leads to a decline in throughput performance. In 

this paper, we introduce an adaptive control of congestion window 

size when the client undergoes the connection migration due to IP 

changes. From the experimentation results, we can see that the 

proposed adaptive congestion control scheme provides significant 

performance improvement.  
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I. INTRODUCTION 

The QUIC (formerly known as Quick UDP Internet Connection) 
protocol has been developed by the IETF [1] as a cutting-edge 
transport protocol. The QUIC protocol encompasses numerous 
features, including a swift handshake integrated with TLS, Zero-
RTT for transmitting user data during the handshake [2], and the 
ability for connection migration.  

Nowadays, mobile devices, such as smartphones, tablets, 
and laptops, are widely used in the industry. As these devices 
are mobile, the operations of maintaining or reestablishing the 
connection's state during the connection is very crucial, due to 
its significant impact on user experience [3]. Therefore there are 
many reach to handle fast handover [4-7] In such scenarios, the 
connection migration can be especially valuable. Connection 
migration allows clients to sustain the connection's context 
regarding user data even when they relocate [1]. Consequently, 
if a client switches locations, its IP address might change. In this 
situation, while TCP would terminate the connection, QUIC 
maintains it through connection migration. This leads to a 
distinction in how the two protocols identify connections. TCP 
relies on IP addresses and port numbers from both the server and 
client pair for identification. However, QUIC uses a connection 
ID. Thus, if the IP address or port number changes as the client 
relocates, QUIC can still identify the connection. 

However, an issue arises when connection migration occurs 
due to an IP address change. The current QUIC implementation 
encounters decreased throughput because it needs to reinitialize 
the current window size, which determines how many packets 
can be sent at once. While a change in port number maintains 
the window size, often observed in NAT rebinding, an IP 

address change might relocate the mobile device to a new 
network state. The client might not be aware if the new network 
state is stable or favorable. 

To tackle this challenge, we propose an adaptive congestion 
control scheme for QUIC with the connection migration, in 
which the initial congestion window size (cwnd) is adaptively 
configured by considering the network conditions of the newly 
visited network, rather than  by setting to the default value for 
the initial cwnd. Our proposed scheme retains a portion of the 
cwnd size instead of initializing it, determining the size based on 
a rough estimate of the bandwidth state in the new network. If 
the new network state significantly improves upon the previous 
one, the proposed scheme can mostly retain the window size. 
Conversely, if the state deteriorates, the proposed scheme 
initializes the window size due to the potential inability to handle 
the sending rate in the new network. 

This paper is organized as follows. Section 2 present the 
proposed adaptive congestion control scheme for QUIC. In 
Section 3, we outline our experimental testbed for performance 
evaluation and  compare the current QUIC scheme with our 
proposed scheme. Section 4 concludes this paper by suggesting 
avenues for future research. 

II. PROPOSED ADAPTIVE CONTROL OF CONGESTION WINDOW 

The proposed scheme introduces a method for addressing the 
initial congestion window when the client changes its IP address. 
Figure 1 illustrates the flow of the proposed scheme in this 
particular scenario. 

 

Fig. 1. Process of cwnd migration 
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A server transmits requested data to a client through 
STREAM frames in QUIC, based on the current congestion 
window. This window represents an approximate bandwidth 
estimation in the current network.  

While the client receives data from the server, it encounters 
a handover event that potentially alters its IP address. 
Subsequently, the client initiates path validation by sending a 
path challenge frame in QUIC. This process, known as path 
validation within QUIC, has twofold: to confirm that the 
endpoint can reach the peer via the designated path, and to verify 
the peer remains that same despite any changes in the path. In 
this context, the client employs path validation to ensure its 
ability to reach the server. Upon the server receiving the path 
challenge, it promptly responds by transmitting the path 
response frame within the QUIC protocol. The path response 
contains an identical value, essentially functioning as a nonce, 
which mirrors the value found in the path challenge generated 
by the sender of the path challenge itself. Upon successful 
reception of the path response by the client, the path validation 
is deemed successful, signifying that the client can now transmit 
data to the server using this verified path. 

However, it is important to note that path validation does not 
extend to validating a peer's ability to send data in the opposite 
direction. This limitation arises due to insufficient entropy and 
the potential for spoofing. Consequently, the server also initiates 
a path challenge. In this context, the server seeks to assess the 
round-trip time along this new path, which may involve utilizing 
the default path within the connection with the client. 

Once the server receives a path response matching the path 
challenge it issued, the server gains the latest round-trip time in 
the new network. Additionally, the client proceeds with the 
migration of its connection to the new network, having 
successfully verified the path. Following the migration of the 
connection, the client dispatches Non-probing Frames, 
encompassing frame types within QUIC that are not probing in 
nature, such as ACK and STREAM frames. It's important to 
acknowledge that the server cannot initiate the transmission of 
non-probing frames until it receives corresponding non-probing 
frames from the client. Consequently, after the server receives 
these non-probing frames, it can commence transmitting data 
using STREAM frames. 

Prior to transmitting frames, the server calculates the initial 
congestion window size using the latest round-trip time in the 
new network, as illustrated by the following equation: 

 cwndnew  =  max ( 𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜

 cwndold,   cwndinit) 

If the current round-trip time in the new network surpasses 
the minimum round trip time observed in the previous network, 
it suggests the potential for the network's performance to be less 
optimal in the new environment compared to the previous one, 
despite outward appearances. As a result, the initial window size 
is configured with a predetermined value chosen by the QUIC 
implementation.  

However, if the latest round trip time is shorter than the 
minimal round trip time from the previous network, the server 
configures the initial congestion window based on the disparity 

between these round trip times. In essence, when the difference 
is considerable, the server might adopt an almost identical 
congestion window size. Conversely, if the difference is 
relatively small, the server may opt for the initial value of the 
congestion window.  

After determining the initial congestion window size for the 
new network, the server initiates data transmission at a rate 
consistent with this window size. 

III. EXPERIMENTATION RESULTS 

A. Testbed setup for experimentation 

Figure 2 depicts the testbed established to assess the proposed 
scheme. A router was configured to establish distinct paths to 
the server, which is connected to the KNU University Network. 
Additionally, we configured the smartphone to access the SKT 
5G network through Ethernet tethering. 

 

Fig. 2. Testbed configuration for experimentation 

The KNU network environment encompasses a network 
bandwidth ranging from 150 Mbps to 200 Mbps, exhibiting a 0% 
packet loss rate, and an average round-trip time (RTT) spanning 
from 1.7ms to 3.5ms. The routers employed included the ASUS 
RT-AX55 and the IpTIME A8004T models. Furthermore, the 
SKT 5G network environment features a network with speeds 
ranging from 100 Mbps to 150 Mbps, with a packet loss rate 
varying between 0% and 5%. The average round-trip time 
within this network environment ranges from 27ms to 48ms. 

We employed the Chromium QUIC transport module [8] 
and application on Ubuntu 20.04 with Linux kernel version 
5.15.0-52. The STREAM frame typically consists of 1,250 bytes. 
Throughout data transmission, network handover events occur. 
To manage congestion, we employed the CUBIC algorithm [9], 
the default congestion control algorithm in Chromium. 

B. Comparison of Congestion Window Size 

Figure 3 depicts the congestion window size over the course of 
the experiment, representing a portion of the total transmission. 
During the experiment, "cwnd-initial" refers to the initial value 
of the congestion window, which is set to 32 as determined by 
Chromium when the network path undergoes a change. 
Conversely, "cwnd-migration" pertains to the proposed scheme, 
involving the migration of a portion of the previous network's 
congestion window size. 

A handover event takes place at the 200 ms mark within the 
experiment timeline. Furthermore, in this experiment, we 
performed a handover from the SKT 5G network to the KNU 
network. Additionally, each value presented in the experiment 
timeline is an average derived from a total of 10 experimental 
runs. 
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Fig. 3. Trace of congestion windows in two schemes 

As the handover occurred, our proposed scheme maintained 
a relatively stable initial window size, slightly lower than the 
size prior to the handover event. Notably, the congestion 
window size for the new path reached around 86% of the size 
for the old path in this context. After the handover, our 
observations underscored the proposed scheme's agility in 
adjusting the congestion window size to match current 
bandwidth conditions, surpassing the performance of the 
existing scheme. This was evident in the larger window size of 
the proposed scheme between 200ms and 250ms compared to 
the existing scheme. As a result, we observed the proposed 
scheme achieving a stable window size faster than the existing 
one. 

C. Comparison of Handover Thoughput 

To compare the performance between the two schemes, we 
measured the handover throughput from the start of the 
handover until 100ms afterward. Figure 4 shows the handover 
throughputs for the existing cwnd-init scheme and the proposed 
cwnd-migration scheme. 

 

 

Fig. 4. Trace of congestion windows in two schemes 

We observed a nearly doubled throughput in the proposed 
scheme, attributed to its capability to initiate data transfer at a 
rate closely aligned with the previous network's rate. We 
hypothesize that if the bandwidth difference were even greater 
than what our current testbed indicates, the proposed scheme 
might yield even higher throughput compared to the existing 
scheme. 

IV. CONCLUSIONS WITH FUTURE WORKS 

This paper outlines our approach to maintaining consistent 
window sizes in QUIC despite IP changes. We address scenarios 
like IP changes during server data reception due to handovers. 
We introduce an equation to maintain window sizes from the 
previous network configuration. Additionally, we detail our 
performance evaluation setup, comparing our proposed scheme 
to an existing one. Our results reveal that the proposed scheme 
outperforms the existing approach. However, relying solely on 
single path validation for bandwidth assessment might be 
inadequate due to the limitation that a single round-trip time may 
not accurately depict the new network's bandwidth. 

Thus, our upcoming research will focus on enhancing 
bandwidth measurement methods by employing specific 
measurement intervals after an IP change for more accurate 
results. We will also explore path selection policies, especially 
for clients with diverse paths through various network interfaces. 
Additionally, we'll compare this with MPQUIC, a protocol that 
utilizes multiple paths for data transfer [10]. 

Notably, we plan to conduct tests for our future research in 
an ultra-low latency SDN (Software-Defined Networking) 
network, allowing us to evaluate streaming service performance 
under ideal network conditions. 
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