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Abstract—As more of the world’s information is digitized, it
becomes increasingly important for the bits constituting the data
to have integrity. Because bit errors are corrected and detected
by the error correcting code module that can burden the entire
system, it must be positioned only where it is needed. Therefore,
it is necessary to detect places vulnerable to bit inversion error,
when encoding and decoding ECC. However, the reproduction of
bit inversion error cannot be deterministically described at the
register transfer level (RTL) design stage, and it is difficult to
find it at the RTL simulation stage. In this paper, we propose a
structure that uses Tcl and unified power format (UPF) together
to solve the above problem at the RTL design stage and verify
the structure using a tiny processing unit (TPU). In order to
find out vulnerabilities in RTL design based on the module-
specific power which is derived from inserted bit inversion, we
utilized the Tecl file to insert inversion error into simulation
runtime and UPF to identify the power of each module. Also to
validate vulnerabilities at simulation runtime, we accelerated the
simulation. We branch the simulation by saving and loading the
snapshot, which reduces unnecessary repetitive motions during
multiple simulation times. Through this process, we verified 40 %
time reduction of simulation time.

Index Terms—robust design, fast RTL simulation, error toler-
ant, error correcting

I. INTRODUCTION

As more of the world’s information is digitized, it becomes
increasingly important for the bits constituting the data to have
integrity. Logical data consisting of 0 and 1 do not simply
mean O and 1, but represent information with a lot of high
value. Data loss, as well as corrupted or compromised data
without integrity, can cause significant damage to business
or research. Data are not static. Processors process data by
adding or multiplying a lot of data according to instructions.
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If integrity is not guaranteed in this process, the resulting
data will be very far from the desired result. An unintentional
inversion of 1 bit produces unpredictable results. Inversion of 1
bit can cause unpredictable and serious errors as it is combined
and processed with other data. The bit inversion phenomenon
occurs when the signal, including the data tier, does not reach a
value sufficient for representing O and 1 due to external noise.
In addition, microprocessing and multi-level cell (MLC), used
to increase directivity in memory or processor chips lower the
reliability of processing and memory storage. As the line width
of the circuit and the interval between levels are reduced, the
error between data transmission and reception increases [1].

To solve errors through the error correcting code (ECC) of
the input/output terminal of the processor or memory, errors
are managed and corrected inside the memory or processor.
An ECC module generally uses hamming code to create a
syndrome through the exclusive OR (XOR) operation of bits
and then compares it with parity bit to detect and correct errors
[2]. However, to check d,, bits, the inequality (1) must be
satisfied. p,, means the number of parity bits and d,, means the
number of data bits. According to inequality (1), p,, also needs
to increase as d,, increases. It is installed inside the memory
and processor to ensure bit integrity. However, this soon
becomes the overhead of memory and processor. All data pass
through the ECC module during memory input/output (I/0),
and this becomes a bottleneck at the instruction fetch stage
inside the processor. It strengthens the bottleneck and delays
the overall execution time by increasing the execution time
of each stage. Therefore, data integrity must be guaranteed
by installing the minimum ECC module in the exact location
required. A step is required to identify a vulnerability where
bits can be inverted inside the design [3].

2Pn > dy +pp +1 ey

Several steps are taken to make a chip, define behavior and
verify functionality through RTL design, and test functionality
by iteratively simulating multiple scenarios. After that, based
on RTL design, gate level design, layout, and chip production
are performed. Bit inversion errors are caused by external noise
or the characteristics of a process step. Therefore, it is difficult
to verify bit inversion errors in the RTL stage of implementing
and verifying functions. The possibility of bit inversion due
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to signal change or process noise comes after actual chip
fabrication. However, as bit inversion occurs after the chip is
manufactured, if an ECC module suitable for the bit is added in
the RTL step, the cost of performing the previous step again
occurs. In this paper, we pre-estimated and determined the
vulnerability of bit inversion errors that can occur in the chip
at the RTL stage.

UPF is an acronym for unified power format which is an
Institute of Electrical and Electronics Engineers (IEEE) stan-
dard for specifying power intent [4]. UPF is used throughout
the design flow such as design specifications, logic synthesis,
physical synthesis, analysis, and verification. UPFs can be used
during RTL development and implement power and ground
for cells created during synthesis [5]. This means that power
consumption for each module can be measured differently by
supplying different power to each module in the RTL step. In
the case of a processor, power consumption data are obtained
through different power supplies for each module, such as
arithmetic logic unit (ALU) and controller, and through this, it
is possible to know how each module operates. If bit inversion
is injected through the Tcl file, the operation of each module
can be identified through UPF, as well as which module is
vulnerable to which bit inversion [6].

In this paper, Section I introduces the problem presented
in this paper, Section II describes the background knowledge
used in this paper and motivation for solving the problem, Sec-
tion III describes proposed architecture to solve the presented
problem and Section IV verifies the proposed architecture,
with processing the simulation proves its validity, and finally
concludes in Section V.

II. BACKGROUND AND MOTIVATION

When a bit is inverted, a wide variety of outcomes can
ensue. If an ECC block is encountered after a bit inversion
error occurs, the bits are inverted again to easily display the
original data and operate normally. However, when processed
with other data, the error spreads to multiple modules. As
a result, a variety of errors occur, from software soft errors
that simply change the result value to serious errors that
touch the hardware that needs to be locked. As seen in
Fig. 1, alternatively, an operation error may occur after an
unexpected time as the stored value is later used for operation
by a processor. Memory can correct errors through the ECC
module during input/output, but when manufacturing a chip
that includes a processor, it is necessary to identify vulnerable
points against multiple bit inversions and decide whether to
insert the ECC module [7].

For many chips, understanding the power consumption is a
good indicator of the chip’s operation. In particular, in the case
of designing a small chip such as an embedded system, the
operation of the chip leads to power consumption. Analysis of
power consumption data are used for actual fault detection and
diagnosis, as well as in the case of side channel attack to deter-
mine the operation of the chip from the outside. When a chip
malfunctions, and a hardware error occurs, it does not go to the
next flow, so the bit toggles decrease or it enters an unwanted
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Fig. 1. Bit inversion effect

loop and the number of toggles increases abnormally. When
bit inversion occurs inside the chip, it is possible to identify
which position of each module is vulnerable to bit inversion
by identifying the power consumption of each module.In this
paper, we tested the power consumption of each module for
the bit inversion situation in the simulation stage, and based on
this, we tried to identify the weak points of the bit inversion
of each module [8].

Using Tcl and UPF, it is possible to insert bit inversion
errors into multiple modules in the RTL simulation runtime
and receive the results as power consumption data. However,
as the module grows, the number of places where bit inversion
can occur due to noise continues to increase. RTL design is
carried out by combining several modules together, and bit
inversion occurs during communication between RTL modules
or inside the module. Eventually, as the number of modules
increases, the number of simulations increases by multiplying
the existing number by the number of modules added and the
number of lines to which the module is assigned. As the size of
RTL design increases, the simulation execution time increases
exponentially. This is the biggest obstacle to predicting and
analyzing the possibility of errors for complex modules [9].

A lot of time is consumed to verify the robustness of the
model designed in the RTL simulation runtime. When bit
inversion is inserted for the inter-module communication part
where bit inversion can occur, the RTL design model does not
change, and most of the time, normal operation is performed
by the premade testbench. Most of the various simulations
perform the same operation, and this operation occupies most
of the simulations. This paper uses Tcl to save and branch
intermediate processes of simulation. To simulate multiple bit
inversions, it is important to use the “checkpoint” and restore”
functions to reduce the number of simulation iterations for
common intervals. This replaces the repetitive compilation
time for RTL with the simulation save and restore times.
As many intermediate process snapshots are stored, memory
usage increases and the tradeoff results in a decrease in the
overall execution time [10].
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III. PROPOSED ARCHITECTURE

In the existing RTL simulation stage, it was not possible
to present a robust design for the bit inversion phenomenon.
The bit inversion error is not revealed in the RTL simulation,
and even if the bit inversion is forcibly injected using the
testbench, the result of one error can be seen in the simulation
runtime, and the result due to the bit inversion error cannot
be explained.

Therefore, as seen in Fig. 2 we used Tcl to insert several
types of bit inversion errors into the RTL simulation runtime,
UPF to receive the result, and, use the number of toggles
and input Vdd in RTL design to receive the vulnerability of
bit inversion errors for each module, as well as to determine
its cause. This paper provides information on robustness at
the RTL stage so as to enable a robust system design by
pre-estimating the vulnerability to bit reversal errors at RTL
simulation runtime using Tcl and UPF.

In this paper, we performed RTL simulation after RTL
design to prevent errors due to bit inversion, as seen in Fig.
3. When normal operation is guaranteed after RTL design,
the presented simulation environment assumes communication
between modules or bit inversion that can occur inside the

module. Based on this, it is important to proceed by inserting
bit inversion into the simulation runtime several times using
the Tcl file. At this time, it is assumed that the error inserted
into each module is only a 1-bit inversion. Inversion errors
of 1-bit or more in most cases result in simulation results
that cannot proceed any further, or because most modules
show a lot of differences from the existing reference, it is not
appropriate to find a module that is vulnerable to bit inversion.

By using the Tcl file, it was possible to insert bit inversion
between modules or between modules at runtime. We used
UPF to analyze and feedback the results for each module.
UPF is an IEEE standard that defines power intent in power
optimization for electronic design automation. The standard
was made public through the donation of Accellera equipment.
We used UPF is used to apply various voltages to each module
so that it can operate at different power sources. We derived
the results of each module by applying different voltages to
it, and then we combined these with the simulation results.

Energy consumption per module is defined by the Eq (2).
The energy consumption of each module is the integral of
power, and power is composed of dynamic power consumption
when data are toggled in a module made of CMOS and
power consumption when 1 and O are displayed. The structure
proposed in this paper analyzes energy consumption data
by calculating the number of toggles through bit inversion
insertion as well as the time of data values indicated by each
module.

t1 t0
Emodule = Ntoggle * /Ptoggledt +/ Pldt +/ P()dt
0 0
(2)

We used the customized TPU based on MIPs to verify
the proposed structure. The structure of TPU is as follows.
The TPU has five pipeline sections, instruction fetch, decode,
execute, memory access, and register write. To implement
this, we designed the TPU by dividing it into five modules
in the RTL design. Each consists of ROM, RAM, Controller,
Decoder, and ALU. Each module interacts with one another
for the operation of the TPU and operates to process 16-bit

1558



PD_AU

power stat.e program | ] ; round ‘
control machine counter | control %1‘ D AU SUpPPlY —— primary
A -
power
address
power control N .
register PD_CORE
re%-ilster » data out ground supply —— primary
ile i
ALU regl‘ster bower
-~ > control
"l Au LU logic N —_— PD_ALU
, \ é — - ground supply —— primary
instruction J ower
register
dat.at'“ é — L JePo_w PD_LU
register -
g e—{ground supply —— primary
power
. . VSS
Fig. 4. Processor architecture VDD—— ¢ PD AU
‘ PD_RF L {ground supply —— primary
power

commands by passing through five pipelines such as a Mips-
based processor. In the instruction fetch stage, instructions are
requested and received from RAM, and if a hit does not occur,
ROM is accessed and instructions are fetched. After that, the
command is transmitted to the decode module to proceed with
the process of decoding the command. Based on the decoded
command, the ALU operates in the execute stage, and accesses
memory or updates registered based on decoded command.

When each module transmits/receives data to perform the
operation of the processor or when data are toggled within
each module, bit inversion error may occur. As a result of the
bit inversion that occurs at this time, after parity check through
the ECC checker, it can converge to normal operation or enter
an unused module and then converge to normal operation.
However, when corrupted data are stored in memory and read
again, or when they operate through several modules, a 1-bit
error passes through to another module, causing a software or
hardware error.

The model that injects bit errors and examines the results
proposed in this paper requires a long time in the RTL
simulation process. Bit inversion is forced during the pro-
cedure of processing multiple commands in the TPU, and
the code and preprocessing method that have been verified
for normal operation are all consumed for one simulation.
For one simulation, it is crucial to run it according to the
process of compiling RTL and the written testbench. The
structure proposed uses Tcl and UPF to implement bit errors
at simulation runtime in Fig. 4 and Fig. 5. After it is compiled,
the simulation will inject errors, so there is no need for
repetitive compilation.

We present the structure shown in Fig. 3 to execute the
proposed structure in RTL simulation runtime. The proposed
simulation process simulates normal operation once through
one compilation time ¢, and simulation 4. Afterwards, snap-
shots are saved for each location where bit errors are to be
inserted. After this, all simulations proceed with the remaining
simulations through the process of loading snapshots rather
than compilation. As shown in Eq (3), in the case of the
original simulation, simulation time T,,;ginqiis proportion to
the product of each module and the node between the modules.

Fig. 5. Processor UPF connection

The structure proposed in this paper proceeds with simulation
as much as the product of the number of modules and nodes
between them, as previously demonstrated, but compilation
proceeds once during the initial simulation. After that, a
snapshot is called and processed, resulting T}-oposea of Eq

.

Toriginal = (tc + ts) * module, * node,, 3)

Tproposed = (tc +ts) * ts + ¢ * module,, * node, %)

IV. EXPERIMENTAL RESULTS
A. Experimental setup

This paper proposes simulation runtime bit inversion error
insertion through Tcl and vulnerability identification based
on power consumption data through UPFE. To verify this, we
utilized TPU as an experimental setup. TPU consists of top,
memory, decoder, ALU, registers, and the controller unit as
shown in Fig. 4. The TPU is connected with a total of six
modules and 30 nodes, and the simulation examines the results
of bit inversion of 1 node and tje bit inversion of 2 nodes.

B. Bit inversion vulnerability

In this paper, we inserted bit inversion into the simulation
runtime to identify the bit inversion vulnerability of each
module. In simulation runtime, the result of bit inversion
insertion is expressed as power consumption data through UPF.
Power consumption data are shown by measuring the number
of toggles and the time representing 1 and 0, respectively,
as shown in the Eq (2). The TPU executes 16 instructions.
As a result, errors per module occur as shown in Fig. 6, or
converge to normal operation in case of small errors. Power
consumption data are indicated through the measurement of
time representing 0 and 1 as well as the number of simple
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toggles as seen in Fig 7, so it is possible to identify which
module is vulnerable to which error insertion location.

C. Simulation time

We simulated 16 instructions on a TPU consisting of six
modules and 30 nodes. In the case of one simulation, it
takes 14.03 sec for compilation, elaboration, waveform gen-
eration, and data parsing. About 3,840 simulation iterations
are required to simulate the proposed structure, and the entire

Simulation Time
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Fig. 8. Simulation elapsed time
Compilation & Simulation | Parsin Load&
Repetition | Elaboration (hour) (hour)g Store
(hour) (hour)
Original 3,840 7.52 5.31 2.14 0
Proposed | 3,840 0 6.38 2.14 0.51

TABLE T
SIMULATION ELAPSED TIME TABLE

simulation takes about 15 hours. This is the result of a simple
TPU, and as the module being tested becomes more complex,
the simulation time increases exponentially with complexity
and size. Through the structure proposed in this paper, we
created a snapshot through one compilation and simulation.
After that, for each simulation, a snapshot is called and error
bit insertion and data parsing were performed. As a result,
the simulation time was reduced by about 40% from 15 hours
to 9 hours as seen in Fig. 8 and Table IV-C. Although the
simulation time increased with the use of Tcl, the result of
the omission of repetitive compilation and elaborate processes
took up the most time.

V. CONCLUSION

This paper pre-estimates the risk of bit inversion, an error
that occurs during chip design, at the RTL simulation stage.
At this time, to verify errors that cannot occur at the RTL
stage, Tcl and UPF were used together to forcibly insert a
bit inversion error into the model and log the result. Through
the proposed model, we analyzed the result value through the
power consumption data of the module to be connected to
the UPF in order to determine whether there is a malfunction
in case of bit inversion. Utilizing the power consumption
data, it is important tofind the location where the ECC block
is required by determining the vulnerable position of each
module for the bit inversion error in the RTL simulation step
or to send the result to the gate level, netlist design and layout
to request an additional design.

It is also very time-consuming to simulate many bit inver-
sions in a large RTL design model. The communication part
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and the bit inversion simulation for each module consume
simulation time, which increases exponentially according to
the RTL size. In this paper, we saved and recalled snapshots
of simulations to accelerate the RTL design process. Through
this, meaningless repetition was reduced, and the simulation
time was reduced by 40%.

This paper guarantees robustness against the bit inversion
phenomenon, which was difficult to verify in the RTL design
stage, in order to solve problems that may occur after chip
design. In addition, because numerous repetitive experiments
are required to ensure robustness, the bit reversal risk check
was simulated in the RTL simulation runtime through the
process of branching the simulation by saving and recalling
snapshots of the simulation. This has significance in that chip
problems that do not occur due to RTL problems in RTL
simulation can be checked in the simulation runtime. For the
future work, we plan to verify additional issues that may occur
in a chip using the proposed model.
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