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Abstract—The microcontroller unit (MCU) are mainly used
in low power devices, which use limited energy sources such
as batteries, energy harvesting, and wireless communications.
Therefore, reducing the operating power of the MCU is im-
portant to improve energy efficiency by extending battery life
or minimizing energy consumption. The MCU is one of the chip
designs composed of digital integrated circuits. The clock signal is
important element to the MCU. The clock tree, which consists of
the clock signal, is directly related to MCU low power operation
and performance improvement. Also, chip verification process is
important role to improve performance of overall system and
reliability to the MCU. However, as the degree of integation
of chips, the chip verification process increases complexity and
time-comsumption to process many data. Currently, many users
dependent on licensed electronic design automation (EDA) tools
to ensure high accuracy, minimizing errors in circuit design
and improving reliability. The use of licensed EDA tool puts
a burden on users including high costs, limited license, difficulty
in customization, slow speed, etc. An effective approach to avoid
problems by using licensed EDA tools proceeds verification that
is unrestricted license and customization for possible using only a
register transfer level (RTL) source. In this paper, we propose to
predict roughly pre-estimated CTS results using an RTL source
in which temporary logic using random buffer insertion is placed
before the route process. This paper contributes to reducing MCU
operating power and hardware area by performing optimized
CTS and minimizing resources according to the RTL structure
to be designed.

Keywords—micro controller unit (MCU), low power, clock
tree synthesis (CTS), placement and route (P&R), shallow CTS,
register transfer level (RTL), licensed EDA tool, synthesizable

I. INTRODUCTION

The microcontroller unit (MCU) is used to low power
devices, which uses restricted resources, for example, battery,
energy harvesting, wireless communication, etc [1], [2]. It is
important to reduce operating power consumption to improve
energy efficiency and system stability on the MCU. The MCU,
which is one of integrated circuits (IC) goes through the pro-
cess of the chip verification process. Chip verification process
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is more important to application specific integrated circuit
(ASIC). If the verification process inappropriately performs,
it increases error probability and cost and time-consumption
to iteratively verify and revise chip defect. As the degree of
integration of chips, there has been a demand for an increase
in verification speed and verification accuracy. Many people
depend on various electronic design automation (EDA) tools
such as Synopsys and Cadence, but we need affordable license
limitations or license server costs. Also, the processing speed
of EDA tools can be slow because licensed EDA tools are very
complex and have to deal with large circuits. Using a licensed
EDA tool to verify chips accurately requires a lot of expense,
circuit design time, and verification time for the user.

We conduct research focusing on clock tree synthesis
(CTS) of placement and route (P&R) process, which is time-
consuming process during the verification process. The CTS
is process of optimizing the clock tree so that the clock signal
is passed correctly to all circuits. Also, the CTS can optimize
power consumption of chips. It can optimize switching speed
of the circuit and minimize unnecessary power consumption
to the transmission path of the clock signal by optimizing the
transmission path of the clock signal. The CTS is optimizing
operation of digital circuit, increasing trasmission stability of
the clock signal and minimizing power consumption. If it
constructs efficient clock tree through CTS, the overall system
of MCU can improve performance and reliablity, distributing
the clock signal efficiently on the MCU [3], [4]. The MCU
have various clock operation modes and timing constraints,
and clock signals are accurately distributed through CTS to
ensure stable MCU operation. The CTS can also help optimize
the MCU’s power consumption. In addition, CTS can also
contribute to improving the performance of MCUs. When the
clock signal arrives exactly at the desired timing, the operating
performance of the MCU improves, enabling stable operation
even at high clock frequencies.

The previous works on CTS have tried to preconstruct a
lightweight clock tree based on RTL source for minimizing
clock skew. It has some restrictions, which does not apply
on general Verilog netlist sources on previous works. And, it
performed some of CTS to solve hold violation from input
to D flip-flop data path because it only considered data path
from input to D flip-flop data path. Also, it does not verify
accurately overall CTS result using previous works.

We research CTS pre-estimation accesible general larger
Verilog netlist case using overall clock tree, which includes
all clock path from clock port to D flip-flop clock sink. Fig.
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1 is described that it conducts CTS pre-estimation using an
RTL synthesis Verilog netlist without timing and parasitic
information on the P&R process. Currently, it cannot require
the CTS result with the EDA tool by using only RTL synthesis
Verilog netlsit. To approximate the CTS results of the EDA
tool, we assume in this study that the logic is arbitrarily
placed after going through the placement process before the
route process described as pre-route. Also, it assumes that
the result of placement is zero clock skew state and worst
clock skew occurs by using random buffer insertion algorithm,
which is placing temporary logic on pre-route. We propose
lightweighted CTS optimizing worst placement result, which
has worst clock skew in this research.

We introduce prior studies relatied this study in Section
II. We explain a method for constructing the CTS process
between pre-route and route processes in Section III. Our
approach involves using an open source Parser-Verilog tool
to parse the RTL source and construct a general tree structure
from the parsed components. We discuss how to route the
clock path and set the margin for clock path delay, as well
as how to perform random buffer insertion in the pre-route
process and preconstruct clock tree prediction algorithms. In
Section IV, we provide detailed analysis based on a specific
RTL source using a TSMC 180 nm standard cell library.
We evaluate the effectiveness of our heuristics algorithm for
closing clock tree preconstruction, and observe a reduction
in clock skew and standard deviation before and after CTS
pre-estimation. We compare the maximum clock frequency
achieved by our shallow CTS approach with that of an open-
source EDA tool after CTS. Finally, in Section V, we summa-
rize this research and suggest directions for future research.

II. PREVIOUS WORK

This research aims to the highly expected, CTS process of
place and route (P&R), which is a time-consuming process
in chip verification. The CTS involves optimizing the perfor-
mance, power, and area (PPA) of a chip by efficiently placing

and wiring its elements, particularly focusing on fast and accu-
rate clock signal transmission across the chip [5]. To reduce
the overall power consumption of the chip, a well-designed
clock tree implementation is crucial, often achieved through
the utilization of clock distribution algorithms. However, the
CTS process is known to be time-consuming because of the
need for enhancing circuit stability and performance.

Prior research has primarily focused on CTS of the data
path, specifically from input to D flip-flop’s data path, with
limitation given to overall CTS considerations [6]-[8]. More-
over, prior studies have been limited to specific RTL sources,
typically involving Verilog sources with one output and multi-
ple inputs. In contrast, the current research aims to overcome
these limitations by addressing Verilog sources with multiple
outputs and inputs, which represent general cases. Further-
more, while previous studies have successfully eliminated hold
violations from input to D flip-flop’s data path, the hold
violations specifically pertaining to the clock path have not
yet been resolved.

Summarizingly, this research aims to develop an efficient
and lightweight clock tree synthesis methodology based on an
RTL source, eliminating the need for a licensed EDA tool. The
primary objectives are to reduce both cost and time associated
with the CTS process, considering general cases with multiple
outputs and inputs and addressing hold violations in clock
path.

III. PROPOSED METHOD

The proposed lightweight clock tree implementation process
is depicted in Fig. 2. We provide a detailed explanation of
how to pre-estimate the results of clock tree synthesis from a
Verilog RTL file. The entire process can be broadly divided
into three stages: RTL synthesis, pre-route, and shallow CTS.
To accomplish this, we utilize the open RTL synthesis tool
Yosys to determine if the RTL source is synthesizable. For the
pre-route and shallow CTS processes, we use Parser-Verilog

[O]-[11].
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The input to the process is an RTL synthesizable Verilog
file that describes the design at a behavioral level. Typically,
the CTS process in EDA tools proceeds with an optimized
gate-level representation, incorporating parasitic and timing
information. However, in this study, we perform the shallow
CTS process at the primitive gate level to decide whether to
synthesize a clock tree during RTL time, without considering
data such as timing and parasitic information.

To achieve this, the original Verilog source is transformed
into an RTL synthesizable form using Yosys. It is then matched
with the appropriate standard cell library for the desired
fabrication process and modified to meet various constraints,
such as safety, timing, and load.

Initially, the clock signal exists in an ideal mode that is not
present in the physical clock distribution during RTL design,
synthesis, and placement [12]. In this ideal mode, the clock
signal is assumed to reach the clock pins of all D flip-flops
simultaneously. The original Verilog source is converted to an
RTL synthesizable source using Yosys. It matches the standard
cell library for a suitable fabrication process and modifies it to
meet various constraints such as safety, timing problems, and
load. The pre-route process involves arbitrary logic placement
before the actual routing process. After pre-route process,
the clock is physically connected, resulting in clock skew
due to individual logic placements [13]. It is important to
note that this study does not consider timing constraints or
parasitic components such as R, C, cell strength. Furthermore,
it assumes that the clock path experiences the worst clock skew
as a result of random placements after the pre-route process.
The random placement process is implemented through ran-
dom buffer insertion. This research focuses on developing a
lightweight clock tree synthesis methodology using an RTL
source, and the process involves steps such as RTL synthesis,
pre-route, and shallow CTS.

Random buffer insertion is essential to expressing the state
that the physical clock is connected, and clock skew occurs
in the placement process before the route process. If random
placement does not execute, the clock skew of clock paths does

clock (root)

clock (root)

random buffer insertion
on pre-route process
—

clock sink (leaf)

(a) after RTL synthesis

clock sink (leaf)
(b) after pre-route

Fig. 3. random buffer insertion

not generate because this study assumes that it calculates the
path’s static delay concerning the standard library cell’s delay.
Fig. 3 represents the difference between the clock tree after
RTL synthesis and the clock tree after the pre-route process. It
is simply connected to the clock buffer and clock sink of the D
flip-flop in Fig. 3 (a). There is no clock skew because all clock
paths have the same clock path delay after RTL synthesis. On
the other side, it represents the existence of clock skew by
inserting a random buffer after the pre-route process in Fig. 3
(b). Even so, random buffer insertion is not inserted randomly
but focused on the number of loads connected to the clock
buffer. If there are many loads connected to the clock buffer,
the clock skew will be reduced and the overall chip area will
be larger by placing clock buffers of greater strength. If placing
clock buffers of greater strength, there is a possibility of an
enlarged chip area. To prevent this problem, load balancing
should be carried out by considering the R and C components
of the front and rear stages, but only standard library cell delay
is assumed except timing constraints: parasitic components
like R, C, and cell strength, etc. Therefore, random buffer
insertion is performed by simply determining the number of
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loads.

The shallow CTS process is used to place arbitrary logic
and carry out random buffer insertion that generates clock
skew through the pre-route process. The pre-route process
indicates when the physical clock is connected to all D flip-
flops’ clock sinks. When the physical clock signal is applied,
it arrives at the clock pin at different times. The clock skew
created by clock uncertainty is corrected through the CTS
process. The CTS process progresses to adjust the clock skew
that is generated after physical clock connection. The CTS
recognizes the clock signal from the clock source pin and
delivers the clock signal to thousands of D flip-flops. The
CTS is used to form a buffer tree to match the skew of
clock nets and high fanout nets and to meet design rules such
as maximum capacitance, maximum transition time, etc. The
shallow CTS process is performed in Parser-Verilog using the
RTL synthesizable netlist. In this process, the buffer insertion
algorithm is applied to reach time closure in the clock path.

clock clock clock:

clock patt
delay

clock path
delay

clock path
delay

—_— —_—

clock sink

worst clock
path delay I
i

worst clock
path delay

clock sink clock sink

(@) clock path delay before CTS process (b clock path delay after random buffer insertion (c) clock path delay after CTS

Fig. 4. Comparison CTS

The overall process synthesizes a clock tree through buffer
insertion based on the worst clock skew of the clock path
using an RTL synthesizable source. The variation of clock
skew on the pre-route and CTS processes is illustrated in Fig.
4. Logic placement corrects the worst clock skew through
random buffer insertion on the pre-route process in Fig. 4 (b).
After the pre-route process, it is difficult to solve PPA and
reach the time closure because the worst clock skew occurs in
the clock paths. The CTS inserts buffers based on the worst
clock path to solve overall chip timing and PPA problems in
Fig. 4 (c). It can show reduced clock skew after the CTS
process compared to the pre-route process.

IV. EXPERIMENTS

The experiments conducted in this research aimed to evalu-
ate the effectiveness of the proposed CTS algorithm in reduc-
ing clock skew using different RTL sources. The RTL sources
used in the experiments included a 4-bit divider, map9v3
with an 8-bit linear feedback shift register, and picoRV32,
which implements a CPU core using RISC-V instructions.
The experiments involved measuring the number of inserted
buffers and standard deviation during the pre-route and CTS
processes. The maximum clock frequency was also computed
to compare the CTS results with those obtained using Qflow,
an open-source EDA tool. The experiments were performed
using a TSMC 180 nm standard cell library.
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Fig. 5. Comparision to inserted buffers on pre-route and shallow CTS process.

It is important how much inserted buffers account for
overall chip area and power consumption. We examined the
percentage of inserted buffers and the number of total instances
in Fig. 5 and Table. I. The percentage of inserted buffers and
the number of total instances were analyzed to assess their
impact on the overall chip area and power consumption. The
results showed that the divider had approximately 6.36% of
inserted buffers, map9v3 had around 11.52%, and picoRV32
had about 1.59%.
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Fig. 6.
process.

Comparision to standard deviation on pre-route and shallow CTS

We measured clock path delay and standard deviation on
pre-route and CTS to evaluate the skew of each clock skew,
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Instance number

inserted buffers

inserted buffers

standard deviation

standard deviation

clock frequency

clock frequency

COMPARISION NUMBERS OF INSERTED BUFFER ON PRE-ROUTE AND SHALLOW-CTS PROCESS.

RTL source
on RTL synthesis | after pre-route after shallow-CTS | after pre-route after shallow-CTS | after pre-route after CTS
divider 265 91 31 0.0396 ns 0.0035 ns 367.904 MHz 403.154 MHz
map9v3 215 2 26 0.0309 ns 0.0027 ns 645.218 MHz 813.366 MHz
picoRV32 7534 6 12 0.0140 ns 0.0012 ns 974.056 MHz 1153.65 MHz
TABLE I

as in Fig. 6 and Table I. In Fig. 6, the x axis represents the path
from the clock to a D flip-flop, such as the clock path from the
clock to D flip-flop1, and the y axis represents the standard de-
viation of the clock path delay. Table I calculates the standard
deviation on the pre-route and the shallow CTS process. Clock
path delay and standard deviation were measured during the
pre-route and CTS processes to evaluate the clock skew. The
results demonstrated that after the shallow CTS process, the
standard deviation of the clock skew was reduced compared to
the pre-route process. Clock path delay and standard deviation
were measured during the pre-route and CTS processes to
evaluate the clock skew. The results demonstrated that after the
shallow CTS process, the standard deviation of the clock skew
was reduced compared to the pre-route process. The divider
had a standard deviation of approximately 0.0361 ns, map9v3
had about 0.0282 ns, and picoRV32 had around 0.0128 ns.
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Fig. 7.
process.

Comparison STA result of Qflow on pre-route and shallow CTS

We analyzed the static timing analysis(STA) result of Qflow
in order to proceed with a quantitative comparison. Fig. 7
represents how to obtain the maximum clock frequency on the
pre-route and the shallow CTS process using the STA result
of Qflow. The open EDA tool Qflow executes the CTS on the
route process. We aimed to acquire a collinear comparison
based on the STA that has undergone CTS once to evaluate
the performance of the proposed CTS algorithm. The netlist
of the pre-route process proceeded to the back-annotation

process to acquire a post-STA result that reports the final
CTS results after Qflow’s CTS. It determined the maximum
clock frequency of post-STA on the pre-route process. Further,
the netlist of the shallow CTS process proceeded to the STA
because it already progresses using the proposed shallow CTS
algorithm.

We analyzed the maximum clock frequency after pre-route
and shallow CTS because the clock frequency is an important
factor in chip performance: the results are shown in Table 1.
In addition, most RTL sources tend to slow clock frequency
after the CTS process. The frequency of the pre-route process
measured in the post-STA is the result of Qflow’s own CTS
after the pre-route process. The frequency of the shallow
CTS result measured in STA is the result after the shallow
CTS process. The clock frequency is the measured fast clock
frequency after the shallow CTS process.

V. CONCLUSION

The results of experiments show that the proposed shallow
CTS algorithm is efficient for preconstructing a clock tree and
checking whether the clock tree is synthesizable. The standard
deviation of the shallow CTS not only obviously reduced the
standard deviation of the pre-route, but it also measured a
higher maximum clock frequency than the maximum clock
frequency of Qflow post-STA, which is over after the CTS.
It verified that the performance of the results approaches
zero clock skew through the shallow CTS algorithm, which
focused on clock skew, and the maximum clock frequency of
the shallow CTS process is higher than the maximum clock
frequency of Qflow. The experiments provided insights into
the effectiveness of the proposed CTS algorithm in reducing
clock skew, analyzing the impact on chip performance through
maximum clock frequency measurements, and comparing the
results with an open-source EDA tool. It clearly proves weak
points using a robust clock path standard deviation calculation.

It can be concluded that performing CTS pre-estimation
using a heuristic algorithm can serve as a cost-effective alter-
native to using licensed EDA tools. The use of licensed EDA
tools often incurs high costs and significant time investments
to check the CTS results. Furthermore, with RTL design, it
is not possible to determine synthesizability before synthesis,
leading to increased design costs and time-consuming error
detection. By utilizing shallow CTS before using licensed EDA
tools, users can reduce the expected cost and gain economic
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benefits. Shallow CTS provides valuable information such as
approximate timing results and area additions, allowing for
iterative modifications of the RTL source to align with chip
verification requirements. We conducted in this study focuses
on CTS during the chip verification process, specifically tar-
geting the pre-route and CTS processes. The CTS is a crucial
step in optimizing the clock tree to ensure correct transmission
of the clock signal and minimize power consumption in
integrated circuits, particularly in MCUs used in low-power
devices. By optimizing the transmission path of the clock
signal, the CTS can improve the performance, reliability, and
power efficiency of the overall MCU system. The research
highlights the potential of using a heuristic algorithm for CTS
pre-estimation as a cost-effective and efficient approach. It
enables users to obtain crucial information and make iterative
design modifications before resorting to licensed EDA tools.
The users can reduce expected costs, improve chip verification,
and achieve economic benefits by using shallow CTS.

The implementation of the CTS pre-estimation approach in
this research has certain limitations that should be addressed
for further improvement. One limitation of our implementation
is that it is not a precise delay calculation. Qflow, which is an
open EDA tool, makes elaborate delay adjustments by using
Elmore delay calculation and considers strength, parasitic
elements, and network delay of the front and rear ends. To
enhance the accuracy of the delay calculation in the CTS pre-
estimation, it would be necessary to consider these factors and
incorporate more advanced algorithms. Another limitation of
this research involves the issue of reduced performance on the
shallow CTS process. It takes a long time to execute the route
and buffer insertion algorithm because it retrieves all paths.
Addressing these limitations would contribute to enhancing
the accuracy of the CTS pre-estimation and improving the
overall performance and efficiency of the proposed approach.

Future research should be devoted to the development of
precise delay calculation and overall performance improve-
ment using graph neural network and machine learning. In
addition, future research should apply standard cell libraries
of various fabrications.
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