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Abstract—With the advancement of Internet of Things (IoT) 
and Artificial Intelligence (AI) technologies, outcomes derived 
from diverse sets of collected data are finding applications in the 
business domain. In particular, edge AI technology, which 
combines edge computing and artificial intelligence, emerged to 
address real-time response limitations, is garnering 
considerable attention as a solution to the real-time response 
constraints faced by AI services within operated cloud 
environments. Nevertheless, the development of AI services 
within an edge-cloud environment presents numerous 
challenges, such as limited computing resources at the edge, the 
portability of learning models, and dependencies on code 
libraries during the build phase. Consequently, various open 
source projects and companies are actively advancing MLOps 
solutions. In this paper, we describe the development of a 
microservice-based MLOps platform utilizing open source for 
the development of AI services and the deployment of generated 
models in an edge-cloud environment built using lightweight 
edge hardware, software, and designated servers assuming the 
role of a cloud system. 
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I. INTRODUCTION 
In recent times, advancements in technologies such as the 

Internet of Things (IoT) and artificial intelligence (AI) have 
led to a proliferation of diverse data types and a vast increase 
in data volume. This has prompted numerous industries to 
address challenges by employing a range of AI-driven 
services and solutions. Specifically, achieving high levels of 
accuracy through AI techniques in domains like object 
detection and anomaly detection requires substantial 
computational resources and memory during both the training 
and inference phases[1]. As a result, these services are 
commonly delivered via cloud-based system[2]. Nevertheless, 
the advent of edge computing technology has surfaced as a 
solution to address network challenges and real-time 
responsiveness limitations encountered during data 
transmission within cloud-based systems, Furthermore the 
emergence of Edge AI technology, which combines AI 
services with edge system for data collection, processing, and 
analysis, is garnering attention[3]. 

Utilizing edge computing technology enables real-time 
response to requests, However the development of high-level 
AI services also needs significant computational resources for 
data pre-processing and learning. Furthermore, within an edge 
computing environment comparatively constrained 

computational resources in contrast to cloud system, the 
process of learning may lead to service disruptions attributed 
to the deterioration of performance or system outages. To 
mitigate this issue, numerous companies offer a platform for 
training AI models in the cloud system using data gathered 
from edge system and subsequently deploying the learned 
models. This capability facilitates flexible handling of novel 
environments, datasets, specific events, and issues, it implies 
that AI service developers can engage in effective 
development tasks without the need to address the problem 
from computational resource disparities between cloud and 
edge systems. 

With the ongoing trend in the advancement of lightweight 
edge hardware and software for edge computing, as well as 
the progress in edge AI technology, our research extend to the 
range of efficient development and management of AI 
services within an edge-cloud environment. In this paper, we 
describes an open source microservice-based MLOps 
platform for the development of AI services to operate in an 
edge-cloud environment and the deployment of models 
generated through them. 

II. MLOPS TECHNOLOGY FOR MANAGEMENT OF EDGE 
COMPUTING SOFTWARE AND AI APPLICATION DEVELOPMENT 

A. The Need to Manage Edge Computing Software and AI 
Applications 
The edge computing software we are currently developing 

is implemented through the utilization of the EdgeX 
framework, an open source project managed by EdgeX 
Foundry in the microservice architecture[4]. Each of these 
components carries out its designated tasks by means of an 
interface established in the form of an API and operates as a 
container to provide an independent execution environment. 
Each component facilitates the application of edge computing 
technology through the interaction of data acquisition, parsing 
and storage, and delivery of processed data to the cloud or 
external server. More specifically, the interface established 
through APIs facilitate the implementation of data collection 
and export functionalities, enabling integration with inference 
engines operating in edge environments or servers dedicated 
to learning processes. 

To address the need for real-time responsiveness, which is 
lacking in existing cloud-based AI services, the edge 
computing software is crafted with a set of approximately 14 
logically isolated containerized components, and a learning 
model or inference engine operates for AI services. Due to the 
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nature of edge computing, which processes data in close 
proximity to sensors or end devices, the scope of management 
become broader compared to cloud environments. 
Consequently, this expanded management scope also 
encompasses software. Simultaneously, in order for various 
components to operate without any problems, it is necessary 
to respond quickly when a service failure occurs while 
ensuring the same execution environment in other workspaces. 

B. MLOps Technology for Efficient AI Service Development 
The management of containerized microservices 

encompasses the entire lifecycle, from the creation to the 
removal of each operational component. The service 
developer registers their development outcomes with the 
management server, which subsequently deploys the 
outcomes in a specific server meeting the specifications 
provided by the developer. In case of an issue arising within a 
running component or when an update, the management 
server autonomously identifies the problem and initiates a 
restart or update operation, eliminating the intervention of 
developer or administrator. This method, referred to as a 
development methodology called "DevOps", can be extended 
to the development and deployment of AI applications for AI 
services[5]. 

The concept of MLOps, which involves the automated 
management and operation of machine learning applications 
by integrating the development and deployment of machine 
learning models, facilitates the development and management 
of efficient AI services[6]. To achieve this objective, Google 
has identified several key components of MLOps, including 
data analysis and processing, model training, model 
evaluation, model deployment and validation, and model 
monitoring to ensure operational status[7]. Specifically, AI 
applications developed within isolated containers can offer an 
identical environment as the development phase, preventing 
issues that may arise due to differences in the infrastructure 
environment within the MLOps concept. This implies that 
data analysis and processing, the model development phase, 
and the deployment and management of models within a 
commercial environment can be seamlessly conducted. With 
these advantages, numerous open source projects and 
companies are actively advancing MLOps solutions. 

III. FRAMEWORK AND ENVIRONMENT DESIGN 
By deploying AI models as inference engines within edge 

computing environments, analysis result using AI service can 
be quickly provided. Nonetheless, only edge system gives rise 
to challenges, such as constraints on computing resources for 
executing the complete tasks from AI model training to 
deployment. Hence, the process of AI model training occurs 
on the cloud server via the edge-cloud environment, and 
subsequently, the trained AI model is deployed to the edge 
system or server as an inference engine. Furthermore, the 
depicted platform, as illustrated in Figure 1, was designed to 
apply the MLOps concept to manage the lifecycle of AI 
application development and deployment. 

Figure 1 is a diagram illustrating an MLOps concept 
designed for AI application within an edge-cloud environment. 
Developers utilize data samples from the edge environment to 
create AI services. Developers have the flexibility to 
undertake development tasks either on an assigned PC or 
within a cloud system, following which the developed model 
is uploaded to the cloud environment at the code level. The 
code uploaded to the cloud environment is trained and verified 

within a containerized virtual environment constructed to 
replicate the model development. Additionally, we employ a 
structure known as a pipeline to encompass processed ranging 
from data preprocessing to model training and validation, 
storing the model with optimal weight values within the 
Model Registry. Furthermore, this pipeline, created using this 
approach, facilitates detection of data trend change within 
edge environment and enables automated model re-training 
and deployment. 

This trained model offers two ways for delivering 
inference outcomes in response to data requests through the 
API server within the cloud environment (referred to as the 
offloading approach) or functioning within the edge 
environment as inference engine[8,9]. The mentioned method 
can be selected according to the computing resources 
available in the edge environment. For example, if it is 
determined that AI service operations within the edge 
environment could potentially disrupt the overall functioning 
of edge computing due to inadequate computational resources, 
the adoption of an offloading method becomes a viable option. 

IV. EXPERIMENTAL RESULT 
In order to implement an MLOps platform design applied 

for the edge-cloud environment, the configuration of the 
experimental setup is delineated as depicted in Figure 2.  

 
Figure 1. MLOps concept designed for AI Application development within 
an edge-cloud environment 

 
Figure 2. An edge-cloud environment and configured software built to 
apply MLOps platform design 
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In the case of the edge server, we leverage a gateway 
integrated with edge computing software[10]. The gateway 
was designed based on NVIDIA Jetson Xavier NX with 48 
tensor cores to accelerate machine learning algorithms for data 
analysis, and Cloud layer Servers featuring Xeon CPUs and 
dual NVIDIA A40 GPUs, were employed to fulfill the role of 
the cloud computing environment. 

In terms of software, we leverage various open source 
software to apply the MLOps platform. First, we employ 
Kubeflow, an AI platform built on Kubernetes serving as a 
container orchestration tool utilized for efficient management 
of edge computing software[11,12]. Kubeflow offers a 
comprehensive suite of tools and environments for all tasks, 
ranging from the training of AI models to their deployment 
within an configured Kubernetes environment. Following the 
learning process, the model with finely tuned weight values is 
deployed onto edge servers or cloud instances, thereby 
facilitating AI services. In this process, the task of preserving 
the trained model along with its optimized weight values is 
achieved through the utilization of MLflow which furnishes 
functionalities such as packaging and saving the model. Also 
a registry server was constructed with the intention of being 
deployed after wrapping the model in container images. Saved 
models or container images are deployed within a Kubernetes 
environment in accordance with the conditions of the edge-
cloud environment. 

For the validation of the MLOps platform designed and 
implemented for the development and deployment of AI 
services operating in an edge-cloud environment, we use a 
deep learning-based time-series data forecasting model. The 
mentioned model examines sensor data gathered at the edge 
to assess standard operation status, concurrently identifying 
abnormal data through data forecasting then take actions 
quickly. Hence, the designed and implemented MLOps 
platform was employed to enhance the efficiency of the model 
development process, with the outcomes depicted in Figure 3. 

Figure 3 illustrates the outcomes of establishing and 
executing a pipeline processing model development, 
validation, storage and deployment, also the model is saved 
within MLflow, subsequently operating in the edge-cloud 
environment. When an AI service developer executes such a 
defined pipeline, the model undergoes training using stored 
data, and the trained model is either persisted as an object type 
or transformed into a container image for deployment in a 
containerized environment. With the saved results, it is 
possible to verify that Kubernetes can choose and deploys an 
operational environment within the edge-cloud environment, 
ensuring seamless AI service by considering the current 
environment status. 

V. CONCLUSION 
In this paper, we present the design and implementation of 

an MLOps platform utilizing Kubeflow and diverse open 
source tools for the creation of AI services within an edge-
cloud environment. Additionally, we leverage a deep 
learning-based model to verify the outcomes. In the future, we 
plan to conduct research aimed at extending our capabilities 
to an automated MLOps platform that continuously monitor 
and analyze the status of the edge-cloud environment in real 
time, promptly responding to any anomalies. Furthermore, we 
aim to apply this platform across a range of deep learning 
models for diverse service. 
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Figure 3. The results obtained from the implementation and execution of 
a pipeline encompassing model development, validation, storage, and 
deployment. 
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