

A Microservice-based MLOps Platform for
Efficient Development of AI Services in

an Edge-Cloud Environment

Chorwon Kim, Geon-Yong Kim and Sungchang Kim
Honam Research Center

Electronics and Telecommunications Research Institute (ETRI)
Gwangju, Republic of Korea

{chorwon.kim, gykim, sungchang}@etri.re.kr

Abstract—With the advancement of Internet of Things (IoT)
and Artificial Intelligence (AI) technologies, outcomes derived
from diverse sets of collected data are finding applications in the
business domain. In particular, edge AI technology, which
combines edge computing and artificial intelligence, emerged to
address real-time response limitations, is garnering
considerable attention as a solution to the real-time response
constraints faced by AI services within operated cloud
environments. Nevertheless, the development of AI services
within an edge-cloud environment presents numerous
challenges, such as limited computing resources at the edge, the
portability of learning models, and dependencies on code
libraries during the build phase. Consequently, various open
source projects and companies are actively advancing MLOps
solutions. In this paper, we describe the development of a
microservice-based MLOps platform utilizing open source for
the development of AI services and the deployment of generated
models in an edge-cloud environment built using lightweight
edge hardware, software, and designated servers assuming the
role of a cloud system.

Keywords—Edge computing, Cloud computing, MLOps,
Kubernetes, Kubeflow

I. INTRODUCTION
In recent times, advancements in technologies such as the

Internet of Things (IoT) and artificial intelligence (AI) have
led to a proliferation of diverse data types and a vast increase
in data volume. This has prompted numerous industries to
address challenges by employing a range of AI-driven
services and solutions. Specifically, achieving high levels of
accuracy through AI techniques in domains like object
detection and anomaly detection requires substantial
computational resources and memory during both the training
and inference phases[1]. As a result, these services are
commonly delivered via cloud-based system[2]. Nevertheless,
the advent of edge computing technology has surfaced as a
solution to address network challenges and real-time
responsiveness limitations encountered during data
transmission within cloud-based systems, Furthermore the
emergence of Edge AI technology, which combines AI
services with edge system for data collection, processing, and
analysis, is garnering attention[3].

Utilizing edge computing technology enables real-time
response to requests, However the development of high-level
AI services also needs significant computational resources for
data pre-processing and learning. Furthermore, within an edge
computing environment comparatively constrained

computational resources in contrast to cloud system, the
process of learning may lead to service disruptions attributed
to the deterioration of performance or system outages. To
mitigate this issue, numerous companies offer a platform for
training AI models in the cloud system using data gathered
from edge system and subsequently deploying the learned
models. This capability facilitates flexible handling of novel
environments, datasets, specific events, and issues, it implies
that AI service developers can engage in effective
development tasks without the need to address the problem
from computational resource disparities between cloud and
edge systems.

With the ongoing trend in the advancement of lightweight
edge hardware and software for edge computing, as well as
the progress in edge AI technology, our research extend to the
range of efficient development and management of AI
services within an edge-cloud environment. In this paper, we
describes an open source microservice-based MLOps
platform for the development of AI services to operate in an
edge-cloud environment and the deployment of models
generated through them.

II. MLOPS TECHNOLOGY FOR MANAGEMENT OF EDGE
COMPUTING SOFTWARE AND AI APPLICATION DEVELOPMENT

A. The Need to Manage Edge Computing Software and AI
Applications
The edge computing software we are currently developing

is implemented through the utilization of the EdgeX
framework, an open source project managed by EdgeX
Foundry in the microservice architecture[4]. Each of these
components carries out its designated tasks by means of an
interface established in the form of an API and operates as a
container to provide an independent execution environment.
Each component facilitates the application of edge computing
technology through the interaction of data acquisition, parsing
and storage, and delivery of processed data to the cloud or
external server. More specifically, the interface established
through APIs facilitate the implementation of data collection
and export functionalities, enabling integration with inference
engines operating in edge environments or servers dedicated
to learning processes.

To address the need for real-time responsiveness, which is
lacking in existing cloud-based AI services, the edge
computing software is crafted with a set of approximately 14
logically isolated containerized components, and a learning
model or inference engine operates for AI services. Due to the

1507979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

nature of edge computing, which processes data in close
proximity to sensors or end devices, the scope of management
become broader compared to cloud environments.
Consequently, this expanded management scope also
encompasses software. Simultaneously, in order for various
components to operate without any problems, it is necessary
to respond quickly when a service failure occurs while
ensuring the same execution environment in other workspaces.

B. MLOps Technology for Efficient AI Service Development
The management of containerized microservices

encompasses the entire lifecycle, from the creation to the
removal of each operational component. The service
developer registers their development outcomes with the
management server, which subsequently deploys the
outcomes in a specific server meeting the specifications
provided by the developer. In case of an issue arising within a
running component or when an update, the management
server autonomously identifies the problem and initiates a
restart or update operation, eliminating the intervention of
developer or administrator. This method, referred to as a
development methodology called "DevOps", can be extended
to the development and deployment of AI applications for AI
services[5].

The concept of MLOps, which involves the automated
management and operation of machine learning applications
by integrating the development and deployment of machine
learning models, facilitates the development and management
of efficient AI services[6]. To achieve this objective, Google
has identified several key components of MLOps, including
data analysis and processing, model training, model
evaluation, model deployment and validation, and model
monitoring to ensure operational status[7]. Specifically, AI
applications developed within isolated containers can offer an
identical environment as the development phase, preventing
issues that may arise due to differences in the infrastructure
environment within the MLOps concept. This implies that
data analysis and processing, the model development phase,
and the deployment and management of models within a
commercial environment can be seamlessly conducted. With
these advantages, numerous open source projects and
companies are actively advancing MLOps solutions.

III. FRAMEWORK AND ENVIRONMENT DESIGN
By deploying AI models as inference engines within edge

computing environments, analysis result using AI service can
be quickly provided. Nonetheless, only edge system gives rise
to challenges, such as constraints on computing resources for
executing the complete tasks from AI model training to
deployment. Hence, the process of AI model training occurs
on the cloud server via the edge-cloud environment, and
subsequently, the trained AI model is deployed to the edge
system or server as an inference engine. Furthermore, the
depicted platform, as illustrated in Figure 1, was designed to
apply the MLOps concept to manage the lifecycle of AI
application development and deployment.

Figure 1 is a diagram illustrating an MLOps concept
designed for AI application within an edge-cloud environment.
Developers utilize data samples from the edge environment to
create AI services. Developers have the flexibility to
undertake development tasks either on an assigned PC or
within a cloud system, following which the developed model
is uploaded to the cloud environment at the code level. The
code uploaded to the cloud environment is trained and verified

within a containerized virtual environment constructed to
replicate the model development. Additionally, we employ a
structure known as a pipeline to encompass processed ranging
from data preprocessing to model training and validation,
storing the model with optimal weight values within the
Model Registry. Furthermore, this pipeline, created using this
approach, facilitates detection of data trend change within
edge environment and enables automated model re-training
and deployment.

This trained model offers two ways for delivering
inference outcomes in response to data requests through the
API server within the cloud environment (referred to as the
offloading approach) or functioning within the edge
environment as inference engine[8,9]. The mentioned method
can be selected according to the computing resources
available in the edge environment. For example, if it is
determined that AI service operations within the edge
environment could potentially disrupt the overall functioning
of edge computing due to inadequate computational resources,
the adoption of an offloading method becomes a viable option.

IV. EXPERIMENTAL RESULT
In order to implement an MLOps platform design applied

for the edge-cloud environment, the configuration of the
experimental setup is delineated as depicted in Figure 2.

Figure 1. MLOps concept designed for AI Application development within
an edge-cloud environment

Figure 2. An edge-cloud environment and configured software built to
apply MLOps platform design

1508

In the case of the edge server, we leverage a gateway
integrated with edge computing software[10]. The gateway
was designed based on NVIDIA Jetson Xavier NX with 48
tensor cores to accelerate machine learning algorithms for data
analysis, and Cloud layer Servers featuring Xeon CPUs and
dual NVIDIA A40 GPUs, were employed to fulfill the role of
the cloud computing environment.

In terms of software, we leverage various open source
software to apply the MLOps platform. First, we employ
Kubeflow, an AI platform built on Kubernetes serving as a
container orchestration tool utilized for efficient management
of edge computing software[11,12]. Kubeflow offers a
comprehensive suite of tools and environments for all tasks,
ranging from the training of AI models to their deployment
within an configured Kubernetes environment. Following the
learning process, the model with finely tuned weight values is
deployed onto edge servers or cloud instances, thereby
facilitating AI services. In this process, the task of preserving
the trained model along with its optimized weight values is
achieved through the utilization of MLflow which furnishes
functionalities such as packaging and saving the model. Also
a registry server was constructed with the intention of being
deployed after wrapping the model in container images. Saved
models or container images are deployed within a Kubernetes
environment in accordance with the conditions of the edge-
cloud environment.

For the validation of the MLOps platform designed and
implemented for the development and deployment of AI
services operating in an edge-cloud environment, we use a
deep learning-based time-series data forecasting model. The
mentioned model examines sensor data gathered at the edge
to assess standard operation status, concurrently identifying
abnormal data through data forecasting then take actions
quickly. Hence, the designed and implemented MLOps
platform was employed to enhance the efficiency of the model
development process, with the outcomes depicted in Figure 3.

Figure 3 illustrates the outcomes of establishing and
executing a pipeline processing model development,
validation, storage and deployment, also the model is saved
within MLflow, subsequently operating in the edge-cloud
environment. When an AI service developer executes such a
defined pipeline, the model undergoes training using stored
data, and the trained model is either persisted as an object type
or transformed into a container image for deployment in a
containerized environment. With the saved results, it is
possible to verify that Kubernetes can choose and deploys an
operational environment within the edge-cloud environment,
ensuring seamless AI service by considering the current
environment status.

V. CONCLUSION
In this paper, we present the design and implementation of

an MLOps platform utilizing Kubeflow and diverse open
source tools for the creation of AI services within an edge-
cloud environment. Additionally, we leverage a deep
learning-based model to verify the outcomes. In the future, we
plan to conduct research aimed at extending our capabilities
to an automated MLOps platform that continuously monitor
and analyze the status of the edge-cloud environment in real
time, promptly responding to any anomalies. Furthermore, we
aim to apply this platform across a range of deep learning
models for diverse service.

ACKNOWLEDGMENT
This work was supported by the Korea Institute of Energy

Technology Evaluation and Planning (KETEP) and the
Ministry of Trade, Industry and Energy (MOTIE) of the
Republic of Korea (No.2021202090053B, Development and
Demonstration of Cloud Energy Management System for
Distributed Factories).

REFERENCES
[1] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Revice,”

in Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019.
[2] A. Banijamali, O.-P. Pakanen, P. Kuvaja, and M. Oivo, “Software

architectures of the convergence of cloud computing and the Internet
of Things: A systematic literature review,” in Information and Software
Technology, vol. 122, Jan. 2020.

[3] Raghubir Singh, and Sukhpal Singh Gill, “Edge AI: A survey,” in
Internet of Things and Cyper-Physical Systems, vol. 3, pp. 71-92, Mar.
2023.

[4] “EdgeX Foundry”, Accessed on: July 28, 2021. [Online]. Available:
https://www.edgexfoundry.org/

[5] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano,
“DevOps,” in IEEE Software, vol. 33, no. 3, pp. 94-100, Apr. 2016.

[6] D. Kreuzberger, N. Kühl and S. Hirschl, "Machine Learning
Operations (MLOps): Overview, Definition, and Architecture," in
IEEE Access, vol. 11, pp. 31866-31879, Mar. 2023.

[7] “Practitioners guide to MLOps: A framework for continuous delivery
and automation of machine learning”, Accessed on: August 15, 2023.
[Online]. Available:
https://services.google.com/fh/files/misc/practitioners_guide_to_mlop
s_whitepaper.pdf

[8] Giha Yoon, Geun-Yong Kim, Hark Yoo, Sung Chang Kim, and
Ryangsoo Kim, “Implementing Practical DNN-based Object Detection
Offloading Decision for Maximizing Detection Performance of Mobile
Edge Devices,” in IEEE Access, vol. 9, pp. 140199-140211, Oct. 2021.

[9] Changsik Lee, Seungwoo Hong, Sungback Hong, and Taeyeon Kim,
“Performance analysis of local exit for distributed deep neural
networks over cloud and edge computing,” in ETRI Journal, vol. 42,
pp. 658-668, Oct. 2020.

[10] Chorwon Kim, Geun-Yong Kim, et al, “An opensource based software
framework for analysis on high-speed generation industrail data,” in
Summer Annual Conference of KIEE, 2022, pp. 1786-1787

[11] “Kubeflow”, Accessed on: August 15, 2023. [Online]. Available:
https://www.kubeflow.org/

[12] “Kubernetes”, Accessed on: August 15, 2023. [Online]. Available:
https://kubernetes.io/

Figure 3. The results obtained from the implementation and execution of
a pipeline encompassing model development, validation, storage, and
deployment.

1509

