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Abstract—Due to the swift progress of transmission technolo-
gies, the challenges faced by satellite systems are continually
escalating. These challenges encompass not only the heightened
complexity in system design, operation, and optimization but
also multi-objective trade-offs in power consumption, bandwidth,
coverage areas, and so on. Additionally, as satellites form a crucial
nexus of global communication, the demand for efficient satellite
network design and management is also growing exponentially.
While conventional algorithms frequently struggle when dealing
with high-dimensional, nonlinear, and multi-constraint problems,
evolutionary computation becomes a feasible tool due to its
robust global search capabilities, multi-objective optimization
techniques, and adaptability to complex systems. This survey
explores the various applications of evolutionary computation in
the satellite domain, especially focusing on resource allocation,
path optimization, signal processing, and network design and
management.

Index Terms—Evolutionary Computation, Satellite

I. INTRODUCTION

Satellite technology has made significant strides in sectors
like global communication, remote sensing, and navigation. As
this technology evolves and diversifies its applications, satellite
systems have become indispensable for daily operations. With
such advancements come intricate challenges in the areas
like trajectory optimization, interference management, payload
configuration, and resource allocation [1]. Many of these
challenges, marked by a multitude of parameters, diverse ob-
jectives, and constraints, often prove challenging for traditional
optimization algorithms to navigate.

Evolutionary computation provides a vital adaptability suit-
able for confronting the intrinsic challenges of the satellite
domain. Satellite signal and image processing, for exam-
ple, involve a myriad of parameters that demand meticulous
adjustments to enhance signal quality or image resolution
[2], [3]. With its proficiency in handling nonlinear, multi-
modal, and high-dimensional problems, evolutionary compu-
tation promotes a thorough exploration of solution spaces,
sidestepping the limitations of local optima.

In resource allocation scenarios, there is a persistent push
to improve communication capacity and service quality [4],
especially considering the limited bandwidth and energy. Con-
ventional linear programming methods may not be able to
support such multi-dimensional and nonlinear optimization
tasks. In contrast, evolutionary computation, with its extensive
search capabilities, can yield more competitive solutions.

The extensive search capability of evolutionary computation
can play a important role when solving complex problems in

the satellite domain. We can consider the satellite trajectory
optimization, which aim to minimize fuel usage while evading
space debris [5]. Traditional methodologies can at times be
restricted to nearby solutions, inadvertently missing out on
more optimal trajectories. However, evolutionary computation
covers a wider range of exploration and can reveal efficient
trajectories that might otherwise have been overlooked.

Furthermore, the inherent parallelism and scalability of evo-
lutionary computation are especially relevant for addressing
large-scale challenges in satellite domain. As these networks
become more complex, the intricacies of managing inter-
satellite links, optimizing throughput, and reducing latency
become more pronounced. Thanks to their ability to simul-
taneously assess multiple solutions, evolutionary computation
offers a more efficient approach to these challenges.

Overall, evolutionary computation stands as an effective and
versatile strategy to address various challenges in the satellite
domain. This survey aims to explore the applications of evo-
lutionary computation in the satellite domain, highlighting its
value and potential. The remainder of this paper is organized
as follows: Section II provides a brief overview of commonly-
used evolutionary computation algorithms, Section III discover
different evolutionary algorithms from the perspective of satel-
lite applications, and Section IV concludes the paper.

II. EVOLUTIONARY COMPUTATION

Evolutionary computation is a category of computational
methods based on principles of biological evolution and col-
lective intelligence. Its aim is to optimize and address various
complex problems by simulating the natural evolutionary pro-
cess. These methods mimic biological evolution mechanisms
like inheritance, mutation, and selection to seek optimal or
approximate solutions from candidate solution spaces. Evolu-
tionary computation includes various algorithms, such as Ge-
netic Algorithms (GAs), Particle Swarm Optimization (PSO),
Differential Evolution (DE), Ant Colony Optimization (ACO),
etc., each of which exhibits specific advantages in different
problems and applications. With widespread applications in
optimization, search, machine learning, and so on, evolution-
ary computation is employed to tackle intricate problems,
optimize algorithm parameters, and perform multi-objective
optimization tasks. Below are introductions to several common
algorithms.

• Genetic Algorithm is one of the earliest and widely ap-
plied evolutionary computation algorithms. They simulate
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biological genetics and evolution mechanisms by repre-
senting solutions in the form of chromosomes. Through
operations such as crossover, mutation, and selection,
GAs search for optimal solutions within a population.
GAs are suitable for various optimization problems,
including parameter optimization, function maximiza-
tion/minimization, and so on.

• Particle Swarm Optimization is inspired by the behav-
ior of bird flocks and fish schools, simulating the process
of particles searching for optimal solutions in the solution
space. Each particle represents a solution and updates its
position and velocity based on individual experience and
group information to find the global optimal solution.
PSO performs well in optimization problems and con-
tinuous space search.

• Differential Evolution is a widely used evolutionary
computation method in the field of numerical optimiza-
tion. It involves generating random differential vectors
and performing crossover and mutation operations on the
objective function values in the population to search for
optimal solutions. DE outperforms in parameter optimiza-
tion, function fitting, and global search tasks, effectively
exploring problem spaces and discovering improved so-
lutions.

• Ant Colony Optimization is inspired by the observed
behavior of ants searching for food, simulating the pro-
cess of ants searching for optimal solutions in solution
spaces. Ants communicate by releasing pheromones, and
more ants tend to choose paths with higher concentrations
of pheromones. ACO finds wide applications in areas
such as graph optimization and the traveling salesman
problem.

Each of these evolutionary computation algorithms exhibits
distinct advantages in various problem domains and applica-
tions, simulating biological evolution mechanisms to search
for optimal or near-optimal solutions within solution spaces,
thus playing a significant role in addressing practical problems.

III. APPLICATIONS IN THE SATELLITE COMMUNICATIONS

The satellite domain encompasses various aspects of satel-
lite system design, launch, operation, and optimization. These
systems cover a range of applications such as communication,
Earth observation, navigation, and scientific research. Satellites
are deployed into orbit to provide essential services including
global communication coverage, weather monitoring, disaster
management, and navigation assistance. The complexity of
satellite operations requires addressing challenges related to
orbit design, communication protocols, data processing, re-
source allocation, signal transmission, and network manage-
ment.

Given the intricacy of satellite systems and the need for
efficient solutions, various advanced technologies, including
evolutionary computation methods, have found widespread
applications in this field. These methods aim to enhance
performance, optimize operations, and overcome complexities
associated with satellite activities. The following sections will

outline the role of evolutionary computation in addressing key
challenges within various satellite domains.

A. Resource Allocation and Scheduling

In recent years, the field of satellite communication faces
significant transformation. On one hand, expansive constella-
tions launched by companies like SpaceX, SES, and Ama-
zon, encompassing dozens to thousands of satellites, are
redefining the conventional industries [6], [7]. Simultaneously,
emerging, highly flexible payload technologies [8], such as
tunable phased-array antennas and adaptive modulation tech-
niques, coupled with surging demands [9] (like amplifying
internet-based services and streaming facilities for air and
sea vessels) are prompting a move from static approaches
to dynamic, high-dimensional settings. Moreover, the advent
of non-geostationary orbits (NGSO) introduces a temporal
dependency, which was non-existent in the early era of
satellite communication. Consequently, in this complex high-
dimensional environment, traditional manual operations are
becoming outdated. Considering the above, both the academics
and industries are actively searching for innovative solutions
to tackle dynamic resource allocation and its associated chal-
lenges.

Resource allocation within the satellite communication do-
main covers a range of sub-problems [10]. One key aspect is
the scheduling of beam-to-satellite [11], which mainly revolves
around deciding the appropriate times to activate or deactivate
specific beams to achieve balanced loads and minimal inter-
ference. In the next generation of satellite constellations, most
locations on Earth will be continuously visible to multiple
satellites, as shown in Fig. 1. Consequently, beam-to-satellite
scheduling must decide which satellite will serve each user
and manage transitions between satellites. In addition to in-
troducing temporal dependency, these technological advance-
ments allow operators to deploy hundreds or even thousands
of beams, further enhancing resource utilization efficiency.
However, this also pushes the challenge of beam-to-satellite
scheduling into a highly challenging high-dimensional domain.

For high-throughput, multi-beam, and single-plane satel-
lite constellations, the beam-to-satellite scheduling problem
can be formalized as an integer problem [12], where the
number of involved variables grows quadratically with the
number of beams. Traditional integer programming methods
can efficiently pinpoint optimal solutions in low-dimensional
situations. However, as the dimensionality increases, these
methods become inefficient over escalating complexities. In
such complex situations, evolutionary computation, with its
ability to effectively handle high-dimensional problems, of-
fers strong support for tackling this increased complexity.
Pachler et al. used the PSO algorithm as a viable solution
[12], benchmarking it against other Artificial Intelligence (AI)
and conventional methodologies. The results proved that, in
high-dimensional scenarios (i.e., when the number of beams
exceeds 200), the PSO method exhibits noticeable advantages.

In addition to the PSO algorithm, other evolutionary com-
putation algorithms also have widespread applications in the
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Fig. 1. Ultra-dense low earth orbit based terrestrial-satellite network.

field of satellite resource allocation. To address the co-channel
interference issue of neighboring satellites through frequency
allocation, Sanz et al. separately combined the simulated
annealing algorithm [13] and the GA [14] with the Hopfield
neural network, proposing two hybrid algorithms. Salman
et al. proposed several algorithms based on DE, including
adaptive DE, standard DE with appropriate mapping, and
hybrid algorithms that combine greedy heuristics with adaptive
or standard DE [15].

Due to the high adaptability, outstanding robustness, rapid
convergence, and ability to find approximate global optimal
solutions to complex problems, evolutionary computation has
become a key technology in addressing resource allocation and
scheduling challenges in satellite communications.

B. Orbit Design and Planning
Satellite orbit design plays a crucial role in ensuring that

satellite missions, whether for communication, observation, or
scientific purposes, are executed effectively. Common chal-
lenges in this domain include optimizing coverage areas,
minimizing fuel consumption, ensuring efficient maneuvers,
and adjusting to unforeseen events like natural disasters.
Moreover, ensuring that satellites avoid debris and other space
objects requires dynamic orbit adjustments [16]. Evolutionary
computation has emerged as a potent tool in addressing these
challenges, providing flexible, efficient, and adaptive solutions
that traditional deterministic methods might struggle with. The
adaptability of evolutionary algorithms allows them to find
near-optimal solutions in complex, high-dimensional design
spaces, making them particularly well-suited for the intricacies
of satellite orbit design.

One of the major concerns in the field of satellite orbit
design is the design and optimization of Earth observation
satellite (EOS) systems. Earth observation satellites are in-
strumental in capturing images of Earth’s surface, especially
for disaster monitoring like earthquakes and floods [17], [18].
Their widespread use is attributed to their extensive obser-
vation capacity and high frequency. However, as shown in
Figure 2, when a rapid response is required, their effectiveness

Fig. 2. Orbit maneuver scheduling for EOS disaster observation.

can sometimes be constrained. Their regular orbits might not
promptly or adequately cover the affected area, thus requiring
the adjustment of satellites to more optimized orbits.

In contexts that involve satellite orbit maneuvers, the current
research largely concentrates on the reconfiguration of satellite
constellations [19]. Evolutionary computation has shown great
potential and application value in this field. A variety of
evolutionary algorithms, such as PSO and GA, have been
widely used in this research direction, effectively solving
complex trajectory design and adjustment question. Numerous
evolutionary algorithms, such as PSO and GAs, have been rig-
orously employed in this field, effectively addressing intricate
orbit design and adjustment challenges.

For instance, He et al. [20] introduced a physical pro-
gramming technique, paired with a GA, to address the multi-
objective satellite constellation reconfiguration problem for
disaster monitoring. Hu et al. [21] proposed a multi-objective
optimization framework for satellite constellation optimiza-
tion, aiming to meet the requirements of emergency obser-
vations during disasters. Luo et al. [22] presented an adaptive
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TABLE I
RELATED APPLICATIONS OF EVOLUTIONARY COMPUTING IN THE FIELD

OF SATELLITE ORBIT DESIGN

Author Algorithm Research Focus

Soleymani
et al. PSO & GAs [23]

Optimal mission planning of
satellite constellation

reconfiguration (best starting
and ending points for

satellites)

Wang et al. Hybrid-resampling
PSO [24]

Agile satellite constellation
design (considering sensor
types, attitude maneuvers,
and coverage performance

metrics)

Shirazi GAs with simulated
annealing [25]

Multi-objective orbit
maneuver optimization

Pontaniet al. PSO [26]

Four impulsive orbit transfer
problems (optimization
between co-planar &

non-co-planar, circular &
elliptical orbits)

Yao et al. Enhanced DE
algorithm [27]

Orbit design (with adaptive
and stochastic mechanisms)

Hitomi et
al.

Evolutionary algorithm
with variable-length
chromosome [28]

Metrics optimization related
to coverage, number of

satellites, and semi-major
axis in multiple
constellations

DE algorithm combined with ACO to study the satellite orbit
maneuver optimization problem for urgent observation tasks
under sudden disasters.

Besides considering satellite orbital maneuvering, evolu-
tionary computation also has extensive applications in other
aspects of satellite orbit design. Table I lists some relevant
studies in this area.

C. Data Processing and Analysis

A core focus of satellite communication is signal processing
and data analysis, with satellite image processing playing
a pivotal role. As satellite technology grows increasingly
sophisticated and the generation of high-resolution images
expands, the number of parameters in these images intensi-
fies, posing significant challenges in processing and analysis.
Evolutionary computation, with its capability of parameter
optimization, feature selection, and model tuning, provides
powerful tools for tackling these intricate, high-dimensional,
and multimodal problems. Its nature-inspired search strategies
and global optimization capabilities make it an ideal solution
for tasks like image segmentation, denoising, and fusion.

1) Image Segmentation and Object Detection: Satellite
image segmentation is among the most crucial techniques in
image processing, dividing a given image into distinct, non-
overlapping categories based on color, texture, edges, and
other parameters [29], [30]. Over the past decades, numerous
segmentation methodologies have been proposed, including
clustering, edge detection, region growing, and threshold seg-
mentation [31]–[33]. Among them, threshold segmentation
has gained widespread acceptance due to its simplicity and
efficiency [34]. However, in satellite images with multiple
objects and intricate details, conventional bimodal thresholding

often falls short, prompting researchers to develop multi-level
thresholds to enhance its applicability.

Optimistic segmentation thresholds can be pinpointed more
precisely by utilizing the parameter optimization and feature
selection capabilities of evolutionary algorithms. This not
only improves segmentation quality but also addresses high-
dimensional issues efficiently. Recently, evolutionary compu-
tation techniques combined with Minimum Cross Entropy
(MCE) have shown promise in satellite image segmentation,
particularly in finding optimal segmentation thresholds [35].
For instance, an efficient satellite image segmentation method
based on the Grasshopper Optimization Algorithm (GOA) and
MCE combines GOA with adaptive DE to enhance search effi-
ciency and retain population diversity in subsequent iterations
[36].

2) Image Enhancement and De-noising: The objectives
of image enhancement and de-noising are to ameliorate or
augment the visual effects of an image and to reduce unnec-
essary noise within it. Images may be tainted by various un-
wanted noises during acquisition and transmission, potentially
compromising the image’s resolution, quality, and accuracy.
Hence, de-noising becomes an important task in satellite image
processing. Image enhancement and de-noising often involve
numerous parameters like thresholds, filter sizes, and weights
[37]. Evolutionary algorithms can seek the optimal or near-
optimal combinations of these parameters over a broad pa-
rameter space, ensuring peak image processing performance.

For instance, a novel approach employing the Clustering-
Based Multi-Swarm Differential Evolution Aided Harris Hawk
Optimization (CMDHHO) in the wavelet domain has been
introduced for satellite image de-noising [38]. This method
shows superior de-noising results, high computational effi-
ciency, and reduced processing times, seamlessly integrating
with the aforementioned objectives and strategies.

3) Image Fusion: To efficiently utilize energy resources
and communication bandwidth, multi-spectral images captured
by earth observation satellites typically have a lower spatial
resolution compared to panchromatic images. Image fusion
techniques can integrate images from multiple sources, captur-
ing their geometric shapes and information content to produce
a clearer and more detailed image [39]. This method finds
applications in various domains, including land classification,
spectral analysis, and change detection [40], [41]. Evolutionary
computation can optimize parameters in the fusion process,
yielding more authentic and higher-quality images. Among
them, the weighted DE algorithm can be employed to optimize
the parameters of the Contrast Stretching Based Pansharpening
(CSP) method [42], ensuring the best image processing results.

D. Network Design and Management

The satellite communication consists of the complicated in-
teractions of various components, from ground-based stations
to satellites orbiting the Earth [43]. Central to this system is
the challenge of designing and managing robust and efficient
satellite networks. Such networks need to facilitate smooth
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data transmission, mitigate potential communication failures,
and adapt to ever-changing environmental conditions.

One of the key issues in satellite network design and
management is satellite routing. This crucial aspect needs
toidentify the optimal communication pathways between satel-
lites, and from satellites to ground stations. Effective routing
is critical to ensure timely, reliable, and efficient data transfers.
However, the dynamic nature of satellite networks, character-
ized by shifting topologies, bandwidth constraints, and trans-
mission delays, often complicates this task [44]. The relative
motion between satellites, coupled with Earth’s rotation, can
result in frequent disruptions and re-establishments of links.

Effective routing is vital [45], not just for the techni-
cal aspects but also for the practical implications of sub-
optimal routing decisions: increased latencies, reduced data
throughput, and potential communication breakdowns. Failure
in this critical aspect can have cascading effects on dependent
systems, emphasizing the urgency and precision required in
routing decisions.

Evolutionary computation techniques offer unique capa-
bilities to navigate the vast solution space associated with
satellite routing problems. Their inherent capability to adapt
and learn makes them well-suited to tackle the complexities
presented by the dynamic nature of satellite networks. Using
these algorithms, a near-optimal routing path can be derived,
making efficient use of the capabilities of the satellites and
ensuring seamless communications.

Long et al. explored the application of evolutionary algo-
rithms in satellite network routing [46]. They integrated evo-
lutionary computing techniques, such as ACO and GAs, with
improved virtual topology strategies to provide an effective
solution for routing challenges in Double-Layered Satellite
Networks (DLSNs). Compared to traditional methods like
Shortest Path First (SPF), this evolutionary approach demon-
strates significant superiority, especially in tackling issues of
link congestion and packet loss probability.

As the satellite industry continues to grow, with more satel-
lites being launched into orbit and newer applications being
explored, the importance of efficient satellite network design
and management will only amplify. Evolutionary computation
methods, with their adaptability and optimization capability,
will undoubtedly play a pivotal role in this process.

IV. CONCLUSION

Satellite technology is an indispensable part of modern
society, with its scope and intricacy constantly on the rise.
To address these challenges, evolutionary computation offers a
potent approach. This survey predominantly showcases the ap-
plication of evolutionary computation in satellite orbit design,
resource allocation, signal processing, and network design and
management. The highlighted applications demonstrate the
competitive performance of evolutionary computation, render-
ing global optimum or near-optimum solutions and displaying
real-time adaptability in dynamic satellite communication set-
tings.

In other areas of satellite applications, such as fault detec-
tion, navigation and positioning, satellite cluster management,
and task scheduling, evolutionary computation also holds huge
potential. As technology further evolves, we anticipate that
evolutionary computation will play a critical role in numerous
sub-domains of satellites, steering us towards a more efficient
and intelligent space era.
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