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Abstract— GNSS is extensively employed for applications 
requiring high reliability. However, GNSS inherently 
encompasses varying error factors and is susceptible to 
malicious attacks such as spoofing. To ensure stable GNSS 
utilization, it is imperative to incorporate GNSS spoofing signal 
detection mechanisms into GNSS signal processing. In this 
paper, artificial intelligence (AI) to detect the spoofing in GNSS 
signal is proposed. The developed AI model effectively detects 
the spoofing within GNSS signals while the satellite navigation 
solutions changing over time. The AI was trained using 
simulated GNSS data, confirming the feasibility of employing 
AI techniques for GNSS signal processing. 
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I. INTRODUCTION 
Global Navigation Satellite Systems (GNSS) have 

emerged as a cornerstone of modern society. GNSS such as 
GPS, GLONASS, Galileo, and BeiDou is crucial for a wide 
range of applications that depend on accurate positioning, 
navigation, and timing information. GNSS affects our daily 
lives in various aspects enabling efficient transportation and 
precision agriculture, enhancing response against natural and 
man-made disasters, and promoting scientific research. 

The aviation industry heavily relies on GNSS for precise 
navigation, approach, and landing procedures. GNSS aids in 
reducing pilot workload and enhancing safety during flight 
operations [1, 2]. In agriculture, GNSS is used for precision 
planting, spraying, and harvesting. Accurate positioning 
allows farmers to optimize resource usage, increase yields, 
and reduce environmental impact [3]. GNSS aids in real-time 
vehicle tracking, route optimization, and fleet management. It 
enhances efficiency, reduces fuel consumption, and improves 
customer service [4]. GNSS enables rapid and accurate 
location determination during emergencies, facilitating timely 
response and rescue operations [5]. GNSS synchronization is 
vital for the reliable functioning of telecommunication 
networks, ensuring accurate timing for cellular networks, 
broadband, and satellite communication systems [6]. GNSS 
plays a role in space science and exploration, including 
satellite missions and spacecraft navigation. Precise 
positioning is essential for space-based observations and data 
collection [7]. GNSS synchronization is crucial for 
maintaining stability and synchronization in power 
distribution grids, ensuring accurate power flow 
measurements, and facilitating grid management [8]. 

GNSS is very convenient for obtaining the positioning, 
navigation, and timing information, but the signal strength is 
weak and is easily affected by nearby interference signals, 
which is likely to cause large errors and malfunctions. GNSS 
fault has a serious negative impact on various applications. 
GNSS fault yields erroneous positioning data to aircraft 

navigation systems, which can lead to catastrophic 
consequences during critical approach and landing phases. 
Disaster response teams can be directed to the wrong locations, 
slowing down rescue operations in the midst of crises. Robots 
for precision agriculture can be controlled inaccurately, 
resulting in uneven crop distribution and wastage of resources. 

There are two types of GNSS error sources: systematic 
errors and random errors. The systematic errors are also called 
deterministic errors. The systematic errors exhibit consistent 
patterns which can be modeled and corrected. The systematic 
errors include clock errors, ephemeris errors, ionospheric 
delay, tropospheric delay, multipath effects. Although the 
atomic clocks on GNSS satellites are very accurate, small 
discrepancies occur between the satellite clocks and the 
receiver's clocks, resulting in clock errors. Ephemeris errors 
are come from inaccurate prediction of orbital positions and 
velocities of the satellites. The GNSS signals are delayed 
while passing through the ionosphere and the troposphere, 
which produces the ionospheric delay and the tropospheric 
delay.  GNSS signals can reflect off surfaces such as buildings 
or the ground before reaching the receiver, producing 
additional signal paths and errors.  

The random errors, also known as stochastic errors, are 
typically not consistent and can vary unpredictably over time 
and space. The random errors result from receiver noise, 
signal interference, and environmental variations. The 
inherent noise in the electronics of GNSS receiver introduces 
fluctuations in the received signal, lowering accuracy. 
External signals like radiofrequency interference disrupt 
GNSS signals. Rapidly changing of atmospheric conditions 
causing unpredictable errors. 

GNSS signal cause a malfunction even by a deliberate and 
malicious attack such as jamming and spoofing. The jamming 
focuses on disrupting or overpowering the authentic GNSS 
signals. The jamming interferes with the reception of GNSS 
signals through the intentional transmission of radiofrequency 
signals. Unlike the jamming, the goal of the spoofing attack is 
to trick GNSS receivers into calculating incorrect position, 
velocity, and timing information. The spoofing uses fake 
signals to deceive GNSS receivers. The fake signals are 
counterfeit GNSS signals that mimic the signals transmitted 
by actual satellites.  The fake signals are carefully designed to 
appear stronger or more authentic than the actual satellite 
signals, causing the receiver to believe it is at a different 
location or time than it actually is. 

Both the spoofing and the jamming attacks highlights the 
vulnerabilities of GNSS signal anomaly and failure. In the 
event of anomaly and failure, detection and correction 
methods are required to provide integrity and reliability of 
GNSS signal and protect applications of GNSS. 
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In this paper, deep neural network-based algorithm for 
detecting anomaly and failure of GNSS signal is presented. 
Developed deep neural network predicts GNSS measurements 
based on the past information. Difference between the 
prediction of the deep neural network and the measurement of 
the receiver is calculated. Anomaly and failure of GNSS 
signal are detected from the difference. The proposed 
algorithm verified the detection performance through 
simulation. 

II. METHODS 

A. Algorithm Overview 
Receiver for GNSS captures satellites signals and 

measures the pseudo-range between the receiver and the 
satellites. Using the satellite positions broadcast from the 
satellites and the pseudo-range, the satellite navigation 
solution which includes location and time of the receiver is 
calculated via least square method. 

The measured pseudo-range, however, is not the exact 
distance between the satellite and the receiver due to the 
systematic errors and the random errors. The satellite position 
broadcast from the satellite also includes an error component. 
Therefore, the satellite navigation solution inherently have 
errors. 

The satellite navigation solution is calculated for every 
captured satellite signals. Because the relative position 
between the receiver and the satellite changes with time, and 
the number and types of visible satellite are varied with time. 
Model parameters for the satellite navigation solution are 
calculated by the least square method. The model parameters 
change every time while the number and types of visible 
satellite are changing, but if the visible satellites are constant 
and the abnormal situation does not occur, the model 
parameters do not change significantly. 

On the other hand, if there are the GNSS spoofing signal, 
not only does the value of measurements change, but it also 
changes the relationship between the measurements, resulting 
the wrong satellite navigation solution. 

Developed algorithm described in Fig. 1 detects the GNSS 
spoofing signal. The algorithm was designed to capture the 
relationship changes between the measurements when the 

GNSS spoofing signal was occurred. As described earlier, it 
is difficult to capture the relationship between the 
measurements because the model parameters for the satellite 
navigation solution are changed every time depending on the 
satellite position. In order to tackle these problem, deep neural 
network techniques were applied to the algorithm to capture 
the relationship between the measurements. 

The detection algorithm uses both least square method and 
deep neural network to get the satellite navigation solution. 
The leas square method calculates the satellite navigation 
solution from the current satellite signal. Whereas, the deep 
neural network predicts the satellite navigation solution from 
the past satellite signal. the GNSS spoofing signal can be 
detected via difference between the results from the least 
square method and the deep neural network. 

When the received satellite signal has the spoofing, the 
currently received signal has the distorted measurements. The 
distorted measurements abnormally change the relationship 
between measurements, resulting the wrong satellite 
navigation solution via least square method. 

Deep neural network in the algorithm was trained to 
capture the current receiver position from the past dataset of 
satellite position and pseudo-range. Though the current 
satellite signal has the spoofing, the deep neural network uses 
the past satellite signal to predict the satellite navigation 
solution. Since the prediction of deep neural network is not 
affected by the distorted measurements, the prediction is close 
to the correct satellite navigation solution. 

When comparing the satellite navigation solution 
calculated by the last square method with the satellite 
navigation solution predicted by the deep neural network, a 
small difference means that there is no spoofing in the GNSS 
signal, and a large difference means that there exist spoofing 
in the GNSS signal. 

B. Satellite Navigation Solution 
The measurements and the position of the receiver have 

relationship in equation (1), where  is the pseudo-range of 
the i-th satellite, (, , ) is the position of the i-th satellite, 
(, , ) is the position of the receiver,  is the clock bias 
of the receiver, and   is the pseudo-range error of the i-th 
satellite. 

 = ( − ) + ( − ) + ( − ) +  +  (1) 

Equation (1) can be linearized as equation (2) at local 
minima. Substituting equation (1) to equation (2) excluding 
error term, equation (3) is obtained. 

 = ()()()
()()()

+   (2) 

 = ()()()


+  (3) 

Equation (4) is obtained by applying equation (3) to all the 
measured pseudo-range of the visible satellite. In equation (4), 
the number of the visible satellite is denoted by n and matrix 
 ∈ ℝ× is calculated by using equation (5). The position of 
the receiver is calculated as in equation (7) by organizing 
equation (6).  

The satellite navigation solution is calculated as in 
equation (7) by randomly setting the initial position and 
applying equation (6) with the measurements. 

 
Fig. 1. Diagram of GNSS spoofing signal detection algorithm 
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C. Deep Neural Network 
Transformer is a deep neural network model developed by 

Google researcher [9]. The Transformer uses the encoder-
decoder structure but is implemented by only attention 
mechanism. The Transformer demonstrated superior 
performance over the recurrent neural network(RNN) in 
sequence data processing, even though the transformer uses 
the encoder-decoder structure without using RNN. 

A small-sized transformer was used to detect the GNSS 
spoofing signal. Major hyperparameters of the transformer 
were set as followings. The size of the input and output in the 
encoder and decoder was set to be 256. The number of 
encoder-decoder layer was set to be 4, where a encoder-
decoder layer is composed by one encoder and one decoder. 
The number of heads to be used in parallel in multi-head 
attention mechanism was set to be 4. Feed-forward neural 
network in the encoder used two 1D convolution layers. 

During the training process of the transformer, the 
optimizer, the learning rate, and the loss function were set to 
be Adam, 0.0001, mean squared error, respectively. 
Sequential data for training were generated from the normal 
satellite signal by setting the time step to 7. Sequential data for 
test were generated from the normal satellite signal and the 
spoofing signal by using the same time step as training data. 

III. RESULTS 
One of ten training data was used as validation data. The 

loss values during the training process for the training data and 
the validation data are described in Fig. 2. Using the 11-th 
generation intel i5-11320H CPU, 294 sequential data were 
used for training, requiring 40ms per epoch for training. Since 
the loss value converged at about 175 epochs, the total training 
time of about seven seconds was required. 

IV. CONCLUSIONS 
GNSS inherently contains variable error factors in the 

measurements and is vulnerable to the jamming and the 
spoofing attacks due to low signal strength. GNSS is widely 
used for the applications need high reliability. Detection of the 
GNSS spoofing signal is mandatory to use GNSS stably and 
response to the malicious attack. 

In this paper, authors suggest deep neural network based 
algorithm to detect the GNSS spoofing signal. The satellite 
navigation solution using GNSS signal changes according to 
the environmental reason and the relative position between the 
satellites and the receiver. The developed algorithm captures 
the satellite navigation solution changing over time and is 
capable of the GNSS spoofing signal detection. 

The convergence of loss values shows that the deep neural 
network can learn from simulated GNSS data. The proposed 
algorithm captures the characteristics of sequence data based 
on the deep neural network, enabling continuous detection of 
the GNSS spoofing signal. 

The proposed algorithm is expect to play an important role 
in securing the reliability of GNSS and contributes to 
expanding the field of GNSS application. The feasibility of 
GNSS signal processing using a deep neural network was 
confirmed. 
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Fig. 2. Loss values for training and validation data 
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