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Abstract—The high overhead associated with the beam training
process poses a significant challenge for highly mobile appli-
cations such as UAV communication. To mitigate this issue,
this study proposes Squeeze-and-Excitation (SE) network that
leverage visual information for accurate beam prediction in
mmWave UAV communication. The SE network can selectively
emphasize informative features through channel-wise feature
recalibration, which enables the network to adapt to changing
conditions, and optimize its predictions for different scenarios.

Index Terms—UAV, mmWave, vision-assisted beam prediction,
ResNet50, SE-ResNet50.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), are widely recognized
as a key enabler for the development of next-generation
aerial networks and are expected to play a critical role in
realizing advanced applications. To meet the demanding data
rate requirements of these applications, equipping UAVs with
mmWave transceivers and deploying large antenna arrays is
indispensable. However, adjusting the narrow beams of these
arrays, which is vital for ensuring a satisfactory signal-to-
noise ratio, involves a significant training overhead that scales
with the number of antennas. Moreover, the frequent updates
required to maintain the optimal beam index due to the highly
mobile nature of UAVs and their three-dimensional motion
further exacerbate the beam training overhead. Therefore, it
is imperative to explore novel approaches that can overcome
these challenges and enable highly mobile mmWave UAV
communication.

Various solutions have been proposed to address the optimal
beam selection issue, focusing on beam training, channel
estimation, and tracking. Recently, machine learning (ML) has
gained attention for leveraging additional wireless environment
information. For example, positional information is used to
predict the optimal beam indices at the base station in [1], and
[2], while visual data captured by cameras for beam prediction
is employed in [3] and [4]. However, these solutions are based
on a synthetic data and are geared towards scenarios where the
users typically move in easy-to-predict mobility patterns in
two dimensions. Recently, [5] proposed deep learning models

for beam prediction utilizing sensory data from a large-scale
real-world dataset, known as DeepSense 6G. In [5], deep
learning models were introduced for beam prediction, using
sensory data from a real-world dataset called DeepSense 6G
[6]. In particular, the vision-assisted beam prediction task used
the ResNet50 model. Inspired by this work, we propose a
Squeeze-and-Excitation (SE) network to improve the accuracy
of ResNet50 in beam prediction for vision-assisted tasks. The
accuracy of the algorithm is evaluated based on the number
of times the best beam pair is among the top-k predicted
candidates, with k significantly smaller than the total number
of beam pairs. To assess the performance of the proposed
method, simulation data is generated using DeepSense 6G
dataset [5].

This paper is organized as follows. Section II describes the
system model. In Section III, we introduce the dataset, and the
vision assisted beam prediction approaches. Simulation results
and conclusion are presented in Section IV and V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a communication system in which a flying
UAV with a single-antenna transmitter is served by a base
station equipped with an M -element uniform linear array
(ULA) and an RGB camera, Fig. 1. The communication
system utilizes OFDM transmission with K subcarriers and
a cyclic prefix of length D. To accommodate the mobile
user, the base station is assumed to utilize a predefined
beamforming codebook, F = {fq}Qq=1 , fq ∈ CM×1, where Q
represents the total number of beamforming vectors. Denoting
the channel between the base station and the UAV at the k-th
subcarrier at time t as hk[t] ∈ CM×1 , the received signal at
the UAV can be represented as

yk = hT
k [t]fq[t]x+ vk[t] (1)

where vk[t] is an additive Gaussian noise with mean of zero
and variance of σ2 [6]. The transmitted complex symbol x
must comply with the constraint of E[|x2|] = P , where P
denotes the average symbol power. The beamforming vector
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Fig. 1. System Model

f∗[t] ∈ F at each time step t is chosen in a way to optimize
the average received signal-to-noise ratio, SNR = P/σ2, and
can be expressed as

f∗[t] = argmax
fq∈F

1

K

K∑
k=1

SNR|hT
k [t]fq[t]|2 (2)

Let X [t] ∈ RW×H×C denote the RGB image captured by a
camera installed in the base station at time step t, where W , H
and C are the width, height, and the number of color channels
of the image. Then, we intend to design a mapping function
fθ : X[t] → f̂ [t] which utilizes and predict the optimal beam
index . Our objective is to design an optimal mapping which
maximizes the accuracy of predictions for all U samples within
the data set D can mathematically be stated as

f∗
θ∗ = argmax

fθ

U∏
u=1

P (f̂u = f∗u|Xu)) (3)

where f∗u is the optimal beam index given the RGB image of
the u-th sample, Xu , from the data set [6].

III. VISION-ASSISTED BEAM PREDICTION: SOLUTION
APPROACHES

In this work, we utilize the publicly available scenario 23 of
the DeepSense 6G dataset. Next, we present a brief description
of the data set, and proceed to discuss solution approaches of
the problem in (3).

A. Dataset: DeepSense6G

DeepSense 6G is a multi-modal dataset, which includes
vision, Radar, LiDAR, and GPS data, collected from real-
world scenarios for sensing-assisted wireless communication
applications. Specifically, Scenario 23 of the dataset is in-
tended for investigating high-frequency wireless communica-
tion applications with UAVs. The testbed employs a standard-
resolution RGB camera and an mmWave phased array with
16 elements operating at the 60GHz-band, while a codebook
of 64 pre-defined beams are defined. Moreover, the mmWave
phased array and RGB camera are positioned at a height
of approximately 1.5 meters from the ground level, facing
towards the sky to increase the basestation’s field-of-view
(FoV). Furthermore, to increase the dataset’s diversity, the

Fig. 2. Residual block with skip connection

Fig. 3. Squeeze-and-excitation (SE) block

UAV’s flight is conducted at various heights, distances, and
speeds relative to the basestation [5].

B. Baseline Approach

The baseline model, [6], adopts the vision-assisted beam
prediction model presented in [5], which employs ResNet50,
a popular convolutional neural network (CNN) architecture
widely used for various computer vision tasks. It consists
of 50 convolutional layers, including several residual blocks
of different sizes. The residual blocks allow information to
be directly passed from one layer to another without being
transformed through the use of skip connections, as shown
in Fig. 2. The use of these blocks has proven to be effective
in mitigating the issue of vanishing gradients in very deep
networks. The vision-assisted beam prediction model is trained
and validated on the dataset. Moreover, the top-k accuracy is
used as the metric to evaluate the proposed solution, which is
defined as the percentage of test samples where the optimal
ground-truth beam is included in the top-k predicted beams
[6].

C. Proposed Solution Approach

The proposed vision-assisted beam prediction model inte-
grates a Squeeze-and-Excitation (SE) network into ResNet50,
to perform the classification task of mapping an image to a
beam index. The Squeeze-and-Excitation (SE) network [7] is
a novel deep learning architecture that seeks to enhance the
efficacy of conventional CNNs models, such as ResNet50, by
selectively highlighting informative features and attenuating
less useful ones. The SE network achieves this goal by intro-
ducing a new module, commonly referred to as the SE block,
into the traditional CNN architecture, as shown in Fig. 3. The
SE block comprises two critical operations, namely, squeezing
and exciting. During the squeezing operation, the SE block
compresses the feature maps generated by the convolutional
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layers and Global Average Pooling (GAP) into a lower dimen-
sional space that leads to generating channel wise statistics.
Subsequently, during the exciting operation, the SE block
applies a set of learned weights to the compressed feature
maps, thereby enabling the network to accentuate or subdue
significant features in a selective manner. To do so, the first
FC layer with ReLU activation function reduces the number
of channel, while the second FC layer expands the number
of channels back to the original size of the input tensor. These
FC layers serve as an attention mechanism that amplifies the
important channels. Then, the Scale layer refers to a learnable
parameter that scales the input features by passing the output
of excitation network through a sigmoid activation function
to obtain a scalar weight for each channel. These weights are
multiplied with original input tensor to produce the output of
SE block. This results in a refined set of feature maps that are
more discriminative for the task [7].

The proposed squeeze-and-excitation ResNet50 (SE-
ResNet50) capitalizes on the advantages of high and low-level
features in the context of UAV movement, which requires both
types of features due to its dynamic nature. In other words,
the model can extract and integrate features at various levels
of abstraction, thereby improving the accuracy and robustness
of the model.

IV. SIMULATION RESULTS

In this work, we utilize the publicly available scenario 23
of the DeepSense 6G dataset. The adopted testbed comprises
of two units. Unit 1 primarily consists of a stationary base
station equipped with an RGB camera and a mmWave phased
array. The stationary unit adopts a 16-element 60GHz-band
phased array and it receives the transmitted signal using an
over-sampled codebook of 64 pre-defined beams. The camera
is used to capture RGB images of 960 × 540 resolution at
a base frame rate of 30 frames per second (fps). The RGB
images are fed to the SE-Net consisting ResNet50 and fully
connected (FC) layers.

As reported in Table I, in all scenarios the proposed network
has outperformed the baseline approach in terms of top-k
accuracy, achieving over 90% and near 100% accuracy for top-
1, and top-5 beam selection, respectively. Moreover, since the
speed of UAV and the height are two important factors in UAV
communications, we simulated the results by grouping the
speed and height into three different categories. In comparison
with the baseline, the results show a noticeable improvement
in terms of accuracy, over 81% and 82% accuracies in high-
speed and low height flying UAV, respectively, which is a
crucial in many problems. The reason for such improvement
is that compared to ResNet50, SE blocks in SE-ResNet50
provide an additional layer of adaptivity that recalibrates
feature responses dynamically based on the input, leading to
selective amplification or suppression of specific features in a
channel-wise manner.

V. CONCLUSION

In conclusion, this paper presents a promising approach
for accurate beam prediction in millimeter-wave (mm-Wave)

TABLE I
BEAM PREDICTION RESULTS IN TERMS OF ACCURACY

Scenarios Baseline Model Proposed Model
Top-k Accuracy Top-1 86.32 90.831

Top-2 97.12 98.912
Top-3 99.41 99.699
Top-5 99.69 99.935

Speed (S) S ≤ 10 86.2 90.800
10 <S< 20 78.8 84.501
S ≥ 20 78.8 84.501

Height (H) H ≤ 40 78.1 82.105
40 <H< 80 83.00 89.001
H ≥ 80 86.7 90.879

communication systems (UAV) networks. We explored the
utilization of image data captured by UAV-mounted cameras
to overcome the challenges introduced by rapid channel vari-
ations due to UAV mobility.

This work proposed SE-ResNet50 for vision-assisted beam
prediction for mmWave UAV communication. Simulation re-
sults demonstrate beam predication with SE-ResNet50 yields
better accuracy for Top-1 beam selection in different scenarios
as compared to the baseline ResNet50 approach. By adaptively
adjusting the channel-wise contributions, excitation operation
in the SENet effectively extracts features at different levels of
abstraction. This fact enhances the network’s ability to capture
fine-grained details as well as high-level information, resulting
in improved performance. In the future, it would be interesting
to extend the current frameworks to make use of the remaining
available sensory data in the data set.
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