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Abstract— In this paper, we consider an environment where low-orbit satellites and unmanned aerial vehicles (UAVs) provide 
downlink communication services to ground devices in satellite-air-ground integrated networks (SAGINs). To provide seamless 
connectivity in the SAGIN by using limited frequency resources, we consider an integrated access and backhaul architecture and 
propose the hierarchical Q-Learning algorithm for optimal resource allocation and UAVs’ position control considering the propagation 
delay difference. The proposed algorithm outperforms the various benchmark methods. 
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1. Introduction 

A 6G satellite-air-ground integrated network (SAGIN) with 
integrated access and backhaul (IAB) requires more flexible 
frequency resource utilization to support 3D network connectivity, 
resulting in severe co-tier and cross-tier interferences [1]. Hence, 
considering the interference problem and propagation delay 
difference in SAGIN, we propose the hierarchical Q-Learning 
(HQL) algorithm. 

 
2. System Model 

We consider a low earth orbit (LEO) satellite with  multiple 
beams and   unmanned aerial vehicles (UAVs). Each beam 
provides a downlink communication service to UAVs and  
ground devices (GDs). The channel gains from beam  and UAV 
 to receiver  ∈ {, } are represented as follows [2][3]: 

, = /,.                                      (1) 

, = ,  × , + , × , .               (2) 
Here,   and   are transmitter antenna gain and receiver 
antenna gain, respectively. , is path loss between beam  and 
receiver  . In equation (2), ,  and ,  denotes line-of-
sight (LoS) and Non-LoS (NLoS) probabilities, respectively, and 
,  and ,  are propagation losses of LoS and NLoS, 
respectively. The Signal-to-interference-plus-noise ratio (SINR) 
, of receiver  served by a transmitter  ∈  {, } is defined as 
the transmit power  and noise power . Also, the achievable 
data rate , is defined by , with channel bandwidth  and 
the number of links  as follows:    
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, = (/) ×  (1 + ,)                           (4) 
The proposed HQL proposes a hierarchical framework to 

consider the propagation delay difference between LEO link and 
UAV link. The agents of outer-loop QL and inner-loop QL are a 
beam and a UAV, respectively. At time-step , the state of beam 
 includes channel status and transmit power strength. The action 
is channel and power adjustment; () = [, ] , () ∈
{±, ±,  }. The reward of  in the outer-loop QL is 
the sum-rate of network; () = ∗

 ∗, . In addition, the 
state of UAV   includes channel, power, and location 
information. The actions are channel and power adjustment and 
UAV’s movement; () = [, , , , ], () ∈
{±, ±, ±, ±, ±,  }. Let   be the beam in 
which  resides, and if there are  UAVs in , the reward of  
in the inner-loop QL is the sum-rate of all GDs in ; () =
∗ ∗,,  ∈ {, , , … , }. 

3. Simulation Results and Conclusion 
The altitude of the LEO is 300 km and ground devices 

randomly distributed within the beam coverage. Additionally, the 
random-walk model is applied for GD’s mobility [4][5]. Fig.1(a) 
illustrates that the proposed HQL algorithm converges to the 
optimal value obtained by an exhaustive search algorithm under 
1 beam-3 UAVs-29 GDs. Also, Fig.1(b) shows the performance 
comparison of HQL with fixed UAV movement (FUM), fixed 
channel allocation (FCA), and random action (RA) under 2 
beams-6 UAVs-58 GDs. The HQL method, which optimally 
controls the frequency channel, transmit power, and even the 3D 
location of the UAVs, outperforms the existing benchmark 
methods. 
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Fig.1. Sum rate vs. episode, (a) HQL and optimal method and (b) FUM, 
FCA, RA and HQL. 
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