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Abstract—Sample-efficient reinforcement learning (RL) meth-
ods that can learn directly from raw sensory data will open up
real-world applications in robotics and control. Recent break-
throughs in visual RL have shown that incorporating a latent
representation alongside traditional RL techniques bridges the
gap between state-based and image-based training paradigms. In
this paper, we conduct an empirical investigation of visual RL,
which can be trained end-to-end directly from image pixels, to
address 3D continuous control problems. To this end, we evaluate
three recent visual RL algorithms (CURL, SAC+AE, and DrQ-
v2) with respect to sample efficiency and task performance on
two 3D locomotion tasks (‘quadruped-walk’ and ‘quadruped-
run’) from the DeepMind control suite. We find that using data
augmentation, rather than using contrastive learning or an auto-
encoder, plays an important role in improving sample efficiency
and task performance in image-based training.

Index Terms—end-to-end reinforcement learning, image-based
training, visual reinforcement learning

I. INTRODUCTION

Deep reinforcement learning (deep RL) has proven to be
an effective combination of RL with deep learning, enabling
remarkable achievements across various domains such as
robotics and control [1]–[3]. Many deep RL studies still favor
state-based training. This preference arises from the conven-
tional acceptance that learning from coordinate states provides
significantly better performance with respect to sample ef-
ficiency compared to learning from image pixels. However,
relying on state-based training comes with a major limitation:
when applying the learned policy to a real-world environment,
an additional perception module becomes necessary to acquire
the environment state [4]–[8].

Over the past five years, the RL community has made
significant progress in improving sample efficiency in image-
based training [9]–[11]. These advances in visual RL have
been achieved by learning better low-dimensional latent rep-
resentations through contrastive learning [9], an auto-encoder
[10], or data augmentation [11]. In particular, some recent
visual RL studies, such as DrQ-v2 based on model-free RL
[11] and Dreamer-v2 based on model-based RL [12], have
demonstrated that they can successfully solve complex 3D
continuous control problems, such as humanoid locomotion
tasks from the DeepMind control (DMC) suite [13].

In this paper, we conduct an empirical investigation of
visual RL, which can be trained end-to-end directly from

image pixels, to address 3D continuous control problems.
To this end, we evaluate three recent model-free visual RL
algorithms (CURL [9], SAC+AE [10], and DrQ-v2 [11]) on
two 3D locomotion tasks (‘quadruped-walk’ and ‘quadruped-
run’) from the DMC suite. Our experimental results show that
CURL based on contrastive learning and SAC+AE based on
an auto-encoder struggle to solve the two 3D locomotion tasks
while DrQ-v2 based on data augmentation performs well on
the tasks. These results indicate that using data augmentation,
rather than using contrastive learning or an auto-encoder,
plays a crucial role in improving sample efficiency and task
performance in image-based training.

The rest of this paper is organized as follows. Section II
provides a brief background for visual RL. Section III presents
an overview of three recent visual RL algorithms: CURL,
SAC+AE, and DrQ-v2. Section IV provides our empirical
evaluation of the three visual RL algorithms with respect to
sample efficiency and task performance on two 3D locomotion
tasks (‘quadruped-walk’ and ‘quadruped-run’) from the DMC
suite. Finally, Section V provides a summary of the paper.

II. BACKGROUND

A. Visual Reinforcement Learning

We formulate visual RL as an infinite-horizon partially
observable Markov decision process (POMDP) on the basis
of RGB images. Such POMDP can be described as a tuple
(S,A, P,R, γ, po), where S denotes the state space (a stack
of three consecutive RGB images), A denotes the action space,
P is the transition probability, R is the reward function, γ is
a discount factor, and p0 is the distribution of the initial state
s0. The goal is to find a policy π that maximizes the expected
discounted sum of rewards E [

∑∞
t=0 γ

trt], where s0 ∼ p0,
at ∼ π(· | st), st+1 ∼ p(· | st, at), and rt = R(st, at).

B. Soft Actor–Critic

Soft actor–critic (SAC) [14] is an off-policy RL algorithm
for continuous control problems that concurrently learns a
Q-function, Qϕ, a stochastic policy, πθ, and a tempera-
ture, α, on the basis of the maximum entropy framework.
With the goal of striking a balance between expected return
and entropy, SAC performs soft policy evaluation and im-
provement. The γ-discounted maximum-entropy objective is
E(st,at)∼D [R(st, at) + αH(π(· | st))].
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Fig. 1: CURL, which combines instance contrastive learning
and RL, learns an encoder by aligning the embeddings of
two data-augmented versions, oq and ok, derived from an
observation, o, using a contrastive loss.

C. Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) [15] is
an off-policy RL algorithm for continuous control
problems that concurrently learns a Q-function, Qϕ,
and a deterministic policy, πθ. DDPG uses Q-learning
to learn Qϕ by minimizing one-step Bellman residual
E(st,at,rt,st+1)∼D

[
Qϕ(st, at)− rt − γQϕ̄(st+1, πθ(st+1))

]
,

where ϕ̄ is an exponential moving average of the weights. The
policy πθ is learned by using Deterministic Policy Gradient
(DPG) [16] and maximizing Est∼D [Qϕ(st, πθ(st))].

III. VISUAL REINFORCEMENT LEARNING

A. CURL

Contrastive Unsupervised Representations for Reinforce-
ment Learning (CURL) [9] combines two learning tech-
niques, instance contrastive learning and RL. The primary
goal of CURL is to train a visual representation encoder,
and it achieves this by aligning the embeddings of two data-
augmented versions, denoted as oq and ok, derived from an
image observation o, using a contrastive loss, as shown in
Figure 1. The query observations, represented by oq , act as
the reference point, while the key observations, represented
by ok, consist of positive and negative examples generated
from the mini-batch employed for the RL update. The key
observations are encoded using a momentum-averaged version
of the query encoder. CURL integrates with the RL pipeline by
constructing the RL policy and/or value function based on the
query encoder. Subsequently, these components undergo joint
training, incorporating both the contrastive learning and RL
objectives. A notable strength of CURL lies in its versatility,
as it seamlessly integrates with various RL algorithms that
necessitate learning representations from high-dimensional im-
age data.

B. SAC+AE

SAC with Auto-Encoder (SAC+AE) [10] enhances the SAC
method by incorporating a regularized auto-encoder, allowing
for stable end-to-end training using image pixels in the off-
policy regime. The primary goal of SAC+AE is to improve
sample efficiency in image-based training, and it achieves this

through two key strategies: i) utilizing off-policy methods
and ii) employing self-supervised auxiliary losses. In this
setting, SAC+AE adopts an auxiliary loss that doesn’t rely
on task-specific inductive biases, making the approach more
robust. Through a comprehensive investigation of combining
reconstruction loss with off-policy methods to enhance sample
efficiency in settings with rich observations, SAC+AE ar-
rives at two main findings. Firstly, deterministic auto-encoder
models perform better than β-VAEs [17] due to additional
instabilities stemming from bootstrapping, off-policy data, and
joint training with auxiliary losses. Secondly, propagating the
actor’s gradients through the convolutional encoder negatively
impacts performance. The loss function of SAC+AE is as
follows:

J(RAE) = Eot∼D
[
logpθ(ot|zt) + λz||zt||2 + λθ||θ||2

]
(1)

where zt = gϕ(ot), and λz , λθ are hyper-paramers.

C. DrQ-v2

DrQ-v2 [11] is a model-free off-policy RL algorithm for
image-based continuous control. DrQ-v2 is an extension of
the original DrQ method [18], which adopts an actor–critic
method with data augmentation to learn directly from image
pixels. In comparison to DrQ, DrQ-v2 significantly improves
sample efficiency, running approximately 3.5 times faster.
This substantial improvement is achieved through several
algorithmic modifications: (i) DrQ-v2 switches the underlying
RL algorithm from SAC [14] to DDPG [15], (ii) this change
enables the straightforward integration of multi-step return,
contributing to enhanced performance, (iii) bilinear interpola-
tion is introduced to the random shift augmentation technique,
further benefiting performance, (iv) an exploration schedule
is implemented to enhance exploration during training, (v)
DrQ-v2 selects improved hyper-parameters, including a larger
capacity for the replay buffer, leading to better overall results.
Notably, DrQ-v2 stands out as the first model-free RL agent
to successfully tackle complex 3D humanoid locomotion tasks
from the DMC suite while learning directly from image pixels.
The critic is optimized by the following loss:

LQ(ϕk, ξ,D)

= Eτ∼D
[
(Qϕk

(ht,at)− yt)
2
]

∀k ∈ {1, 2}, (2)

where TD target, yt, is defined as follows:

yt =

n−1∑
i=0

γirt+i + γn min
k=1,2

Qϕ̄k
(ht+n,at+n),

where ht = (fξ(aug(ot)), ht+n = fξ(aug(ot+n)), and
at+n = πθ(ht+n) + ϵ. Here, ϵ represents exploration noise
sampled from clip(N (0, σ2),−c, c), which is similar to TD3
[19], and ϕ̄1 and ϕ̄2 represent the exponential moving averages
of the weights for the Q target networks.

The actor is optimized by the following loss:

Lπ(θ,D) = −Eot∼D

[
min
k=1,2

Qϕk
(ht,at)

]
, (3)

where ht = fξ(aug(ot) and at = πθ(ht) + ϵ.
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(a) (b)

Fig. 2: Two 3D locomotion tasks from the DMC suite: (a)
‘quadruped-walk’ and (b) ‘quadruped-run.’

IV. EXPERIMENTS

A. Experimental Setup

1) Environment Setup: We consider an environment for 3D
continuous control that allows for image pixels as observation.
To be specific, we consider learning directly from image
pixels. In this setup, we do not use the 56 coordinate states
provided by the environment, but instead take as input an
image stack of three consecutive RGB images of size 84×84.
The action space consists of a total of 12 elements, where
there are 4 legs with 3 actuators on each leg.

2) Task Setup: We consider the DMC suite [13], a widely
used benchmark for continuous control problems. We consider
two representative 3D locomotion tasks (‘quadruped-walk’
and ‘quadruped-run’) among a variety of tasks from the
DMC suite. Figure 2 shows the two 3D locomotion tasks,
‘quadruped-walk’ and ‘quadruped-run.’

3) Reward: We consider each episode with 1,000 environ-
ment steps for the two 3D locomotion tasks, where a per-step
reward is within [0, 1].

4) Training: We use PyTorch as a deep learning tool.
Within the experiments, we use a workstation with an Intel
i9 CPU and Nvidia Quadro RTX 8000 GPU. During training,
we ran five different random seeds to provide a reliable
comparative evaluation; that is, the experimental results are
averaged over five different seeds.

B. Empirical Evaluation

We conduct an empirical evaluation for the three recent
visual RL algorithms, including CURL, SAC+AE, and DrQ-
v2, with respect to sample efficiency and task performance
with respect to the two 3D locomotion tasks (‘quadruped-
walk’ and ‘quadruped-run’) from the DMC suite. As shown in
Figure 3, our experimental results show that CURL based on
contrastive learning and SAC+AE based on an auto-encoder
struggle to solve the two 3D locomotion tasks whereas DrQ-v2
based on data augmentation performs well on the tasks. In the
case of the task ‘quadruped-walk,’ both CURL and SAC+AE
are not able to solve the tasks even within 3M environment
steps. These results indicate that using data augmentation,
rather than using contrastive learning and an auto-encoder,
plays an important role in improving sample efficiency and
task performance in image-based training. Therefore, only

Fig. 3: Experimental results for the three visual RL algorithms
(CURL, SAC+AE, and DrQ-v2) on the two 3D locomotion
tasks (‘quadruped-walk’ and ‘quadruped-run’) from the DMC
suite.

using an unsupervised manner through contrastive learning
or an auto-encoder without applying data augmentations may
not be a good choice for efficiently learning a policy in 3D
continuous control.

V. CONCLUSION

We have conducted an empirical investigation of visual
RL, which can be trained end-to-end directly from image
pixels, to address 3D continuous control. Specifically, we
have evaluated three recent visual RL algorithms, including
CURL, SAC+AE, and DrQ-v2, with respect to sample ef-
ficiency and task performance on two 3D locomotion tasks
(‘quadruped-walk’ and ‘quadruped-run’) from the DMC suite.
Our experimental results show that CURL based on contrastive
learning and SAC+AE based on an auto-encoder struggle to
solve the two 3D locomotion tasks whereas DrQ-v2 based on
data augmentation performs well on the tasks; that is, DrQ-v2
outperforms CURL and SAC+AE on the two 3D locomotion
tasks with respect to sample efficiency and task performance.
These results indicate that using data augmentation, rather
than using contrastive learning or an auto-encoder, plays
an important role in improving sample efficiency and task
performance in image-based training. In future work, we hope
to investigate incorporating vision with additional data (for
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example, proprioceptive and tactile feedback) rather than using
visual feedback only.
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