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Abstract—Simulating transient flow inside pipeline networks
has been an important topic in the field of civil engineering
safety. The recent development of the Physics-Informed Neural
Network (PINN) shed light to solve this problem by the means
of machine learning. In this paper, we apply PINN to a transient
compressible fluid pipeline flow problem. We show that PINN
requires a specific data normalization to preserve all necessary
physics information for accurate training. We compare the PINN
prediction with the estimation provided by finite difference
method (FDM), which previously has been the main tool to solve
such problems. As a result, we obtained a mesh-free PINN model
with the difference of less than 0.6% for pressure mapping and
less than 2.3% for mass flow mapping, compared to the FDM
analysis.

Index Terms—Physics-Informed Neural Network, Compress-
ible fluid dynamics, Data normalization, Darcy-Weisbach equa-
tion, Mesh-free model

I. INTRODUCTION

Analyzing fluid flow in a pipeline network has long been an
important topic in the industry, from both economic and safety
point of view. For example, there is an ongoing trend of digital
twin implementation of gas supply lines, for the purpose of
safety training and urban planning.

However, this problem is a typical example of fluid dynam-
ics, which is one of the more difficult problems in the field
of both physics and mathematics. Even if we simplify the
problem by assuming that the system is turbulence-free, the
transient-state analysis boils down to solving system of partial
differential equations, which is often challenging in practice.

Early studies on this problem was done by Stoner [1]
and Yow [2] using classical method of characteristics. Choy
et al. [3] showed that finite difference method (FDM) can
be a better tool to solve these type of problems than the
characteristics method. Shabaik et al. [4] further compared
several numerical methods in both accuracy and response time
for real-time monitoring scheme. Nam et al. [5] extended the
method to multi-node setting. It turns out that one of the main
limitation of FDM is that it is mesh dependent. To obtain high
resolution mesh on the spatial domain, the time mesh needs to
be exponentially more dense, making the overall computation
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slow and often infeasible. As a result, FDM method can only
afford a sparse mesh over the spatial domain for practical
purpose.

Recently the development of machine learning and neural
networks allowed various numerical solution methods for
PDEs [6]. In particular, the introduction of physics-informed
neural network (PINN) [7] has allowed various physics prob-
lems with only small amount of data to be approached like a
PDE with initial and boundary conditions, numerically solved
under machine learning scheme. Since then, PINN has been
applied to wide range of physical applications, such as hy-
perelasticity problems [8], inverse problems [9] [10], thermal
modeling [11] [12] and power systems [13]. Fluid dynamics,
which is mostly based on the Navier-Stokes equation, has
also seen PINN implementation for many particular problems
[14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]
[26] [27]. For our case of practice, the main advantage of
PINN is that unlike FDM, PINN is virtually mesh free, since
a successful training would imply that the collocation loss
converges on an arbitrary set of interior points. Therefore
PINN can provide predictions with much higher resolution
over the spatial domain. In our paper, we will implement PINN
to simulate transient pipeline flow under various scenarios, and
compare it with the previous FDM method.

II. THE PDE MODEL

We consider the flow of a compressible fluid in a straight
segment of a pipeline with circular cross-section. For our
analysis, two different quantities may be considered; the
pressure p of the fluid and the mass flow q at a given point. If
we know those two, the fluid density ρ and the volume flow
ν can also be deduced.

For a given segment of a pipe, the mass and momentum
balance can be described by the Darcy–Weisbach equation as
follows.

∂ρ

∂t
+

∂(ρν)

∂x
+

qLeak

A∆x
= 0

∂(ρν)

∂t
− ∂(ρν2)

∂x
+

∂p

∂x
− qLeakν

A∆x
+

fρν2

2D
+ ρg sinψ = 0

(1)
f is the friction factor which we assume to be constant

throughout the pipe, a is the wave speed constant, A and D
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are area and diameter of the pipe at position x respectively.
qLeak is the leakage mass of the pipe, if applicable. ψ is the
pipeline inclination angle.

In this paper, we consider both qLeak and ψ to be 0 so the
related terms vanish. Moreover, the flow velocity ν is assumed
to be much less than the acoustic velocity a, which allows the
term ∂(ρν2)/∂x to be ignored.

We also use the facts a2 = p/ρ and q = ρAν, and assume
that A is not dependent on x (straight pipe with constant cross-
sectional area throughout) to rewrite (1) as follows.

pt +
a2

A
qx = 0

qt +Apx +
fa2

2AD

q|q|
p

= 0

(2)

III. PINN-FEASIBLE PDE

A. Steady-state analysis

The PDE model discussed above does not provide the
initial/boundary condition, and even in practice they are often
not fully provided. In order to specify them from the limited
control/observed data, for each of our experiment, we will
assume that the system is initially in a steady state. If the
system is in a steady state, both p and q (as well as ρ and ν)
are time-invariant, that is, pt = qt = 0. Plugging in these to
the first equation in (2), we get qx = 0, which implies that
q(t, x) = qss is a constant function.

Because qss is a constant, the second equation of (2)
becomes

px +

(
fa2qss|qss|

)
/(2A2D)

p
= 0

Solving this equation subject to the condition pss(0) = p0
and pss(L) = pL yields the closed form solution of pss(x),
which can then be used to solve for the closed form solution
of qss, as described as follows.

pss(x) =

√
p20 −

p20 − p2L
L

x

qss(x) =

√
DA

fa2
·
p20 − p2L

L

(3)

where p0 and pL are inlet/outlet pressure (we assume that
p0 ≥ pL) and L is the length of the pipe. This suggests that
the initial inlet/outlet pressure information is sufficient for us
to establish the initial condition as a whole.

Figure 1 shows how the initial and boundary conditions are
set up, using an example case which we will further discuss
in section IV.

B. PINN-feasible normalization

It is important to note that each of the position domain x,
time domain t, pressure output p (which must be computed
in pascal unit), and flow output q require data normalization,
as their values are generally large in practical application.
Moreover, unlike many machine learning models, the PDE

Fig. 1. Left: Pressure and flow map at t = 0, computed from steady-state
analysis. Top Right: Observed inlet/outlet pressure over time. Bottom right:
Sample points over time-spatial domain to compute PINN loss. The interior
collocation points does not require actual data sampling.

(2) also needs to be modified accordingly. This is because the
structure of PINN relies on the physical-mathematical relation
of the data as well as the data itself. Without these adjustments
PINN will not train properly.

Suppose p(t, x) and q(t, x) have domain t ∈ [0, T ] and
x ∈ [0, L]. We substitute p(t, x) and q(t, x) with new functions
p̄(u, v) and q̄(u, v), such that the domain is within [0, 1] ×
[0, L/X] and the range is also within similar interval.

p̄(u, v) =
1

P
(p(Tu,Xv)− P ) =

p(t, x)

P
− 1

q̄(u, v) =
1

Q
(q(Tu,Xv)−Q) =

q(t, x)

Q
− 1

(4)

In other words, we use T,X as input scale factor and P,Q
as output scale/normalization factor.

Formula (4), combined with the input scaling t = Tu and
x = Xv suggest the following.

pu =
∂

∂u

( p

P
− 1

)
=

1

P

∂p

∂t

du

dt
=

T

P
pt

qu =
T

Q
qt

pv =
∂

∂v

( p

P
− 1

)
=

1

P

∂p

∂x

dv

dx
=

X

P
px

qv =
X

Q
qx

p = (p+ 1)P

q = (q + 1)Q

(5)

Substituting pt, px, qt, qx, p and q in (2) with relations in (5)
yield the following PINN-feasible PDE.

P

T
p̄u +

Q

X

a2

A
q̄v = 0

Q

T
q̄u +

AP

X
p̄v +

fa2Q2(q̄ + 1)|q̄ + 1|
2DAP (p̄+ 1)

= 0

(6)
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Fig. 2. Top: Overall structure of raw-data PINN. Due to the high discrepancy
between input and output variables, this model does not learn very well.
Bottom: Overall structure of normalized PINN. As the input and output
variables normalize to each other, the loss-computing PDE must be modified
accordingly to preserve the physics information.

Fig. 3. Overall system flowchart. The pipeline design is embedded into
the Darcy-Weisbach equation to establish the PDE structure. The input data
collected from the inlet/outlet position of the pipe, along with steady state
analysis, provide the initial and boundary conditions. This PDE is then scaled
into PINN-feasible modified PDE, which is trained by PINN. Once the training
is complete, it can be used to predict the overall time-spatial pressure and flow
map.

We comment that while the choice of input-scaling factor
T,X are fairly straightforward (one would usually use median
or mean of the input data), the choice of output-scaling factor
P,Q are more heuristic, as they would depend on the unknown
output quantities. The steady-state analysis gives us a good
idea of what P,Q should be, but depending on the type of
the problem, if the model output changes greatly over time,
the choice of P,Q based on the initial observation may not
be adequate.

We will use (6) for our PINN to train p̄θ and q̄θ. For the
rest of the paper, we will use L = 90km and f = 0.003.
Figure 2 compare the overall structure of raw-data PINN
and normalized PINN, and figure 3 shows the schematic
architecture of our approach.

IV. CASE: SUPPLY PRESSURE SPIKE

Here we assume that the pipe has uniform cross-section of
1m2, and is initially in steady state with inlet pressure 1.5bar
and outlet pressure 1.0bar. The inlet pressure will then rapidly
increase up to 3.5bar, under the following formula.

p(t, 0) = 2 ·
(

2

1 + e−50t
− 1

)
+ 1.5

p(t, L) = 1

(7)

We will predict the system over 2500 seconds time win-
dow. The initial pressure distribution and mass flow can be
recovered from (3).

p(0, x) =

√
1.52 − (1.52 − 1.02)

90000
x

q(0, x) ≈ 24.10

(8)

The inputs t and x will be scaled by T = 2500 and X =
105. The outputs p and q will be scaled and normalized by
P = 1.25 · 105 and Q = q(0, x). Using these factors for (6),
the modified p̄, q̄ are now a trainable function.

A. PINN Training

We build a standard neural network that will take two (u, v)
inputs and two (p̄θ, q̄θ) outputs, with 8 hidden layers of 30
nodes each. Each hidden layers include tanh as activation
function.

The resulting p̄θ and q̄θ are then compared with the true
p̄ and q̄ on N0 = Nb = 100 sampled points, each along
the initial and boundary conditions p̄(0, v), q̄(0, v), p̄(u, 0) and
p̄(u, L/X). Moreover, the PDE criterion (6) will be checked
over Nf = 10, 000 sampled collocation points within the time-
spatial domain. The bottom right figure in Figure 1 illustrates
the point sampling scheme. The overall mean square error of
the PINN is defined as follows.

MSE0 =
1

N0

N0∑
i=1

(
p̄θ(0, vi)− p̄(0, vi)

)2

+
1

N0

N0∑
i=1

(
q̄θ(0, vi)− q̄(0, vi)

)2

MSEb =
1

Nb

Nb∑
i=1

(
p̄θ(ui, 0)− p̄(ui, 0)

)2

+
1

Nb

Nb∑
i=1

(
p̄θ(ui, L/X)− p̄(ui, L/X)

)2

MSEf =
1

Nf

Nf∑
i=1

[(
P

T
p̄θu +

Q

X

a2

A
q̄θu

)2

+

(
Q

T
q̄θu +

AP

X
p̄θv +

fa2Q2(q̄θ + 1)|q̄θ + 1|
2DAP (p̄θ + 1)

)2
]

MSE = MSE0 +MSEb +MSEf (9)

We train this PINN for 400,000 epochs under differ-
ent learning rates, including adaptive scheme. For adaptive
scheme, the learning rate step down every 100, 000 epochs,
from 10−3 to 10−6. It turns out that the adaptive learning rate
method yields the best result, which we will use for the model
generation in this paper. Figure 4 illustrates the comparison
between these schemes as well as the loss evolution under the
adaptive scheme.

B. Comparison with FDM result

To verify our result, we solve the same system with a simple
explicit forward-time centred-space (FTCS) scheme. The time
grid was divided into Nt = 5, 000 sub-interval and the spatial
grid was divided into Nx = 16 sub-interval. It is necessary
that Nt ≫ Nx; otherwise the solution starts to oscillate as the
iteration proceeds and might even completely diverge.

Figure 5 compare the time-spatial map of p and q for both
methods. Figure 6 compares the time evolution of p and q for
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Fig. 4. Top: Best loss value after 400, 000 epochs of training under given
learning rate. Bottom: Evolution of loss value MSE under the adaptive
shceme.

specific (quarter) points along the pipe, as well as the pipeline
snapshot at t = 2500. We can observe that both PINN and
FTCS shows similar convergence to the long-time steady-state
solution on the pressure side, but PINN shows a smoother
convergence on the flow side.

To measure the similarity between the PINN prediction
pθ, qθ and the FTCS estimation pF , qF , we will compare the
norm between the difference of the two and pθ, qθ. That is,
we take the sum of absolute difference between the two over
the mesh of FTCS method, and divide it by the sum of PINN
prediction result.

sim(pθ, pF ) =
∥pθ − pF ∥1

∥pθ∥1
≈

∑
|pθ(ti, xi)− pF (ti, xi)|∑

|pθ(ti, xi)|

sim(qθ, qF ) =
∥qθ − qF ∥1

∥qθ∥1
≈

∑
|qθ(ti, xi)− qF (ti, xi)|∑

|qθ(ti, xi)|
(10)

In our experiment, sim(pθ, pF ) ≈ 0.00560 and
sim(qθ, qF ) ≈ 0.02225. Note that neither pθ, qθ nor
pF , qF are exact solution. In fact, we could argue that pF , qF

are more prone to error which has been suggested by previous
studies on FDM approach. This also explains why qθ, qF are
less similar to each other than pθ, pF , as the second equation
in (2) inherently amplifies more error in case of FTCS.

Fig. 5. Prediction map of pressure and mass flow through the pipe. Left
images are prediction from PINN and right images are estimation from classic
FTCS method.

V. CONCLUSION AND DISCUSSION

Our result show that PINN can be a useful tool to simulate
and estimate transient flow subject to relevant situations, but
each problem must be carefully normalized for proper training.
Once PINN is properly applied, compared to FDM methods,
the mesh-free nature of PINN allows higher resolution predic-
tions and ability to deal with drastic change in the system.
Also, PINN method shows better adaptability to different
initial and boundary conditions.

PINN based analysis still has a lot of room to improve. To
train a much more complex system, the loss components in
(9) should be prioritized such that the initial and boundary
conditions are imposed first. This issue has been recognized
from the earliest development of PINN [28] [29], and many
improvements have been proposed since [30] [31]. We look
forward to blend these methods into our model the future.

Also, our ultimate goal is to implement PINN based model
for larger system of pipeline network. Current stage of model
only applies to a single segment of pipeline, and while it
can be directly expanded to multi-nodal pipeline network
theoretically, it will take extreme amount of time to train
such model. To work around this, we can utilize hydraulic
modelling solutions that can compute steady state equilibrium
of universal network [32], and then use it to setup boundary
conditions for the local models as described in this paper.

One of the limitation of PINN, although the same could
be said for FDM methods as well, is that if the initial and
boundary conditions change then the model should be re-
trained accordingly. Because of this, there have been studies
on different type of machine learning structure that could learn
the entire family of PDEs and extrapolate beyond the domain
of interest [33] [34] [35]. While these physics-encoded neural
network (PENN) structures are more difficult to implement
and handle, we believe that PENN could potentially solve the
initial and boundary conditions dependence issue.
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Fig. 6. Comparison of pressure and flow predictions by PINN (solid line) and
FTCS (dotted points). First two images are time evolution for quater points
of the pipe. Last two images are snapshots at t = 2500 with steady-state
solution.

APPENDIX A
NOMENCLATURE

Symbol Description

a wave speed (m/s)

A cross-sectional area of the pipe (m2)

D pipe diameter (m)

L length of pipe (m)

f friction coefficient

g acceleration of gravity (m/s2)

p fluid pressure (bar)

q fluid mass flow rate (kg/s)

t time (s)

x position along the pipe (m)

ρ fluid density (kg/m3)

ν fluid velocity (m/s)

pss, qss steady-state pressure and flow rate

T,X, P,Q input/output scaling factor

N0, Nb number of sample points along boundary conditions

Nf number of collocation sample points

ψ pipeline inclination angle (deg)

qLeak mass flow rate of pipe leakage (kg/s)
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