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Abstract—Unlocking the information concealed in 3D point
clouds by LiDAR is a key mission for autonomous driving.
However, this task is challenging due to the sparsity, continuity,
and unordered nature of point clouds. In addition, creating
annotated data is time-consuming and expensive. This empha-
sizes the crucial necessity of data augmentation. Conventional
object data augmentation methods such as rotation, scaling,
and translation are not fully effective for 3D data. Therefore,
we propose a novel augmentation method, Elastic Deformable
Augmentation (EDA), which enhances data diversity for better
model robustness. EDA applies deformation methods from 3D
graphics to the objects, diversifying their shapes without violating
occlusion or intensity properties. We demonstrate EDA on the
KITTI dataset, where it improves object detection performance,
particularly increasing the mean AP scores by 1.55% and 1.00%,
respectively. Consequently, our research provides compelling
evidence that EDA is a promising approach for augmenting 3D
object detection tasks in autonomous driving.

Index Terms—Deformation, Data Augmentation, 3D Object
Detection, Autonomous Driving

I. INTRODUCTION

Object detection, using LiDAR-generated 3D point clouds
in autonomous driving, is crucial for tasks such as path plan-
ning. However, the nature of these point clouds (unordered,
sparse, and continuous) presents unique challenges [9]. Addi-
tionally, deep neural networks for 3D object detection require
large volumes of annotated data for accuracy. Nevertheless,
the annotation of 3D data is both time-intensive and costly.
Moreover, with the advancement of LiDAR technologies,
there’s often a need for periodic re-labeling. Therefore, data
augmentation becomes essential for object detection in au-
tonomous driving.

In 3D autonomous driving object detection, foreground
diversity has a significant impact, making both the number
and balanced distribution of object classes crucial elements [2].
However, the KITTI dataset, one of the most popular datasets
in the autonomous driving domain, is abundant in vehicle
data but critically lacks pedestrian and cyclist data. Unlike 2D
images, point clouds are inherently sparse and become even
more so as the distance increases. For pedestrians, their repre-
sentation in point clouds is often minimal. Cyclists, especially
at distances exceeding 10 meters, are typically represented

*Equal contribution.

by fewer than 50 points. These challenges contribute to the
complexities models face during their learning processes.

In the task of 3D object detection, various factors, includ-
ing self and external occlusion, signal miss, and scale with
distance, lead to a diverse range of object shapes. These trans-
formed shapes occur in a wide range of locations. Because 3D
data differs significantly from 2D data, augmentation through
simple rotation, translation, and scaling has its limitations, and
there are disputes over the effectiveness of local augmentation,
which is a concept derived from 2D [5].

The previous studies [1] have addressed this issue by
creating data with CAD, generating intensity using a depth
map, and applying a copy-and-paste method to the background
to augment objects for learning. However, restoring intensity,
which is a unique feature of LiDAR, is challenging. In
DR.CPO [2], objects were constructed as whole bodies, and
occlusions were generated according to position to ensure di-
versity and augment objects. But as mentioned in the paper, ad-
ditional work is necessary when motorcycles and motorcyclists
are labeled similarly to vehicles, and the focus is on securing
diversity generated by occlusion. We aim to augment objects
through object deformation, which existing augmentations do
not adequately address, such as vehicle changes and human
movements. While occurrences of damaged vehicles are rare in
real-world scenarios, their detection can significantly improve
performance [8]. Additionally, pedestrian movements exhibit
a wide range of variations, and the movements of cyclists and
motorcyclists are equally diverse. Using conventional data aug-
mentation methods to enhance these aspects is considerably
limited.

Therefore, we propose Elastic Deformable Augmentation
(EDA), an augmentation method suitable for 3D object struc-
tures. Our proposal is based on deformation methods used
in 3D graphics and diversifies the shape of objects without
violating occlusion and intensity. EDA extracts the ground
truth from a scene based on a bounding box, designates
the object’s centroid as the control point, and reproduces
various movements of the object through deformation based
on 3D graphic techniques. The augmented object data is
then repositioned in each scene for learning. Our approach is
described in Figure 1 and Figure 2. The principal contributions
of our work are:

• The introduction of a new pipeline, to the best of our
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Fig. 1: Illustration of FFD with ground truth objects: Control
points are set at the lattice of a regularly spaced grid, and
morphing is carried out based on arbitrarily chosen directions
and weights. The points before deformation are shown in red,
and the points after deformation are displayed in green.

knowledge the first in the autonomous driving field, that
utilizes Elastic Deformable Augmentation for 3D object
detection.

• The proposal of a method that integrates 3D graphics
techniques with ground-truths, and empirical evidence
demonstrating its positive effects on 3D object detection
performance.

II. METHODS

We present a unified pipeline for data augmentation in
3D Object Detection systems, designed specifically for au-
tonomous vehicles. Our approach employs morphing methods
to introduce variations in detected 3D objects. By adding
diversity to the dataset, we aim to improve model performance
across diverse real-world scenarios. The pipeline comprises
two core methodologies: Free-Form Deformation [3](FFD)
and Radial Basis Function based Deformation [4](RBFD). It
proceeds through four primary stages: Control Point Extrac-
tion, Morphing, Bounding Box Adjustment and Inserting the
Transformed Object.

A. Free Form Deformation

Freeform Deformation (FFD) [3] deforms an object based
on a lattice surrounding object as shown Figure 1. When the
points of the lattice are moved, the object deforms according
to the transformation of those lattice points. Each point within
the lattice gets a new position as a result of the deformation.
The transformation of a point inside the lattice can be defined
by trilinear interpolation using the surrounding lattice points.
The mathematical formulation of FFD is:

P (x, y, z) =

l∑
i=0

m∑
j=0

n∑
k=0

Bi(x)Bj(y)Bk(z)P ijk (1)

In this equation, P (x, y, z) represents the position of a point
inside the lattice. The functions Bi, Bj , and Bk are the
Bernstein basis functions for the x, y, and z directions,
respectively. The point P ijk stands as a specific control point
on the lattice, while the summations iterate over the lattice
dimensions denoted by l,m, and n.

Fig. 2: Illustration of RBFD with ground truth objects: Control
points are set using the Farthest Point Sampling (FPS) method,
and deformation is carried out in an arbitrary direction by the
set weight. The blue circles represent the original points from
FPS, and the deformation through RBF is carried out based
on the arbitrarily moved points, indicated by pink circles.

B. Radial Basis Functions Deformation

The Radial Basis Functions (RBF) [7] interpolation tech-
nique, in contrast to FFD, allows localized control points
refinements without the constraints of a regular lattice. The
RBF shape parametrization technique is defined as:

P ′ = P +
N∑
i=1

λiϕ(∥P − P i∥) (2)

In the deformation process, the symbol P denotes the original
position of a point, while P ′ represents the deformed position.
The transformation is influenced by control points, specifically
P i, which has an associated weight λi. The Radial Basis
Function [7], represented by ϕ, determines the degree of
this influence. We use Gaussian spline as this function. The
distance between P and the control point P i measures the
influence based on their proximity. Figure 2 illustrates our
proposal of RBFD.

C. Pipeline for Elastic Deformation in Autonomous Driving

Control Point Extraction: This stage involves extracting
control points using different methods for FFD and RBFD.
For FFD, a cubic lattice encapsulating the object is created
with dimensions(l,m, n) varying based on the object type:
Cars/Pedestrian/Cyclist use a (5,4,3)/(4,3,3)/(3,3,3) lattice. We
designate the intersections of the lattice as control points.
In contrast, for RBFD, we adopt Farthest Point Sampling
(FPS) [6] algorithm with a default of n control points.
Morphing: After the control points have been selected, a
random deformation based on the control points is applied
to objects which are extracted from a various of scenes, using
either the FFD or RBFD method. For FFD, the number of
selected control points and the axis (l, m, n) along which
deformation occurs are chosen randomly. The deformation
magnitude is determined by a random value within the defined
weight range, typically between −0.5 and 0.5. Figure 1
illustrates our FFD method. For RBFD, a random jitter is
applied to the control points using a random jitter function
as illustrated by Figure 2. This jittered points are then used to
deform the original object using RBF interpolation.
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Bounding Box Adjustment: Following the morphing phase,
we adjust the bounding box of the object to account for the
changes in its shape. We recalibrate the box by calculating the
minimum and maximum points in the morphed object, and
subsequently recalculating the box’s range and center shift.
This recalibration ensures that the bounding box accurately
encloses the morphed object, facilitating the 3D detection
model to correctly interpret the newly augmented data.
Inserting the Transformed Object: As a final step, we insert
the transformed object back into the scene for training. In
order to maintain the shape of self-occlusion according to
the LiDAR beam direction, the transformed object keeps its
original position. If there is an existing object at the intended
insertion location, to avoid collisions, the insertion is omitted.

This stochastic pipeline effectively integrates FFD and
RBFD to augment ground truth objects for 3D object detec-
tion models in autonomous driving, enhancing diversity and
resistance to overfitting. It holds potential to improve model
performance across various scenarios.

III. EXPERIMENTS

We evaluated our proposed Free-Form Deformation (FFD)
and Radius Basis Function Deformation (RBFD) augmentation
methods using object detection metrics for Car, Pedestrian,
and Cyclist. We utilized PV-RCNN++ as our baseline model
for this experiment, and compared its performance to that
of the PV-RCNN++ model trained with our FFD and RBFD
augmentation on the KITTI validation dataset. We measured
mean average precision (mAP) with IOU thresholds of 0.7
for cars and 0.5 for pedestrians and cyclists, following the
standards typically applied in other 3D object detection perfor-
mance evaluations. The AP performances are calculated using
40 recall positions (R40). The ’Diff.’ column indicates the
performance enhancement over the baseline.

A. The result of Freeform Deformation augmentation

TABLE I: The impact on performance by Freeform Defor-
mation augmentation.

Method Car Pedestrian Cyclist Mean Diff.

PV-RCNN++ [2] 86.19 60.25 76.15 74.20

FFD 86.63 63.26 77.37 75.75 +1.55

As shown in Table I, the FFD-augmented model outper-
forms the baseline across all categories. Particularly notable
improvements were observed in the Pedestrian and Cyclist
categories. The overall Mean score also saw a significant
enhancement, showing an increase by 1.55% compared to
the baseline. These results convincingly demonstrate the ef-
fectiveness of our FFD augmentation approach in enhancing
the performance of 3D object detection model.

B. The result of RBF Deformation augmentation

Table II illustrates the performance of our RBFD aug-
mentation approach, displaying a superior performance over

TABLE II: The impact on performance by Radius Basis
Function Deformation augmentation.

Method Car Pedestrian Cyclist Mean Diff.

PV-RCNN++ [2] 86.19 60.25 76.15 74.20

RBFD 85.99 61.98 77.63 75.20 +1.00

the baseline in almost all categories except for Car, with
particularly noteworthy improvements in the Pedestrian and
Cyclist categories. The overall Mean score also showed a
significant enhancement, increasing by 1.00% compared to the
baseline. This performance outcome substantiates the potential
of our RBFD augmentation method to significantly boost the
efficacy of 3D object detection model.

IV. CONCLUSION

In this research, we introduce Elastic Deformable Augmen-
tation (EDA) for enhanced 3D object detection. EDA utilizes
3D graphic transformations to diversify object shapes, increas-
ing data variety and model resilience. The approach yields a
significant performance boost on the KITTI validation dataset,
with gains of 1.55% and 1.00% in the overall performance
metrics. Future work may explore additional transformations
to further optimize 3D detection models.
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