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Abstract—Low Probability of Intercept (LPI) radar signals
play a vital role in electronic warfare by maintaining infor-
mational superiority. Classifying these LPI radar waveforms is
a key capability but remains a challenging task due to strong
noise interference. Traditional signal processing techniques often
show limitations in effectively removing complex noise signals.
While deep learning-based modulation classification has exhib-
ited superior performance, its effectiveness is compromised in
the presence of significant noise. In this study, we propose
a deep learning-based denoising method using the U²-Net for
LPI radar signals, followed by modulation classification using a
Convolutional Neural Network (CNN). We further compare the
performance of U²-Net with other denoising models such as U-
Net and denoising autoencoder. Experimental results demonstrate
that the U²-Net outperforms other methods, achieving over 90%
classification accuracy for signals with a signal-to-noise ratio
above -14dB.

Index Terms—Low Probability of Intercept (LPI) radar, time
frequency analysis, U²-Net, U-Net, denoising autoencoder

I. INTRODUCTION

Electronic warfare (EW) is a military strategy that employs
electromagnetic waves for offensive and defensive purposes.
This involves the identification of enemy waves, the protection
of friendly waves, and it is commonly divided into three
core components: electronic attack (EA), electronic protection
(EP), and electronic support (ES). Particularly, EA serves a
pivotal role in achieving dominance over information flow
in military engagements. Within the domain of EA, Low
Probability of Intercept (LPI) radars are utilized. These radars,
due to their low signal power compared to standard pulse
radars, are more challenging to detect, providing a strategic
advantage in electronic warfare. This elusive feature allows
militaries to shield their electromagnetic signals while evading
enemy detection. Additionally, LPI radars employ intricate
intra-pulse modulation techniques, including Linear Frequency
Modulation (LFM), Costas, and Barker [1]. These advanced
modulation methods add another layer of complexity to radar
signal identification, making them more difficult to discern
and decode. As a result, these characteristics have spurred
extensive research in the field to develop more effective
techniques for recognizing and distinguishing the modulation
methods used in radar signals.

With the recent advancements in deep learning technology,
new approaches have been developed for distinguishing signal
modulation methods. One widely used approach transforms
a one-dimensional In-phase and Quadrature (IQ) signal into
a two-dimensional time-frequency image. This transformation
is achieved using Time-Frequency Analysis (TFA) algorithms
such as Short-Time Fourier Transform (STFT), Wigner-Ville
Distribution (WVD), and Choi-Williams Distribution (CWD).
These time-frequency images are then processed using Con-
volutional Neural Network (CNN) for the purpose of modu-
lation method classification [2]. In the study cited as [3], the
researchers effectively distinguished between a dozen different
types of LPI radar waveforms. This was achieved by employ-
ing CNN model that used CWD image as input, resulting in
substantial classification performance. Despite the promising
results of deep learning-based radar waveform identification,
there are still challenges when dealing with LPI radars with
low Signal-to-Noise Ratio (SNR). The relatively high noise
power makes it difficult to discern the features of the radar
signal, leading to a decrease in the performance of deep
learning models. Traditional signal processing techniques can
be employed to denoise LPI radar signals, but these methods
are limited in their ability to thoroughly eliminate complex
noise signals and isolate only the radar signal. In the field
of computer vision, segmentation technology is continually
improving, with capabilities to specifically isolate desired
elements within an image [4]. When this approach is applied to
the Time-Frequency image of LPI radar signal, it becomes pos-
sible to extract solely the portions of the image that correspond
to radar signals. In this research, we utilize U²-Net, a version
of the U-Net deep learning segmentation algorithm, to remove
noise from LPI radar signals. After the denoising process is
completed, we perform modulation classification using the
CNN algorithm. The effectiveness of the denoising model
is demonstrated by comparing the classification performance
between data processed with and without the noise reduction
algorithm.

II. U²-NET

Owing to the frequency variation of LPI radar signals, the
distinctions between modulation types are readily apparent in
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Fig. 1: Classification model using U²-Net and CNN. Noisy CWD images are input into U²-Net, where they are converted to
denoised CWD images, and then used as inputs to CNN for classifying the classes.

the time-frequency image. However, for signals with a low
SNR, the characteristics specific to the signal can be distorted
by potent noise. This distortion complicates the ability of CNN
model to discern image-specific features and is a primary
factor in subpar classification performance. Thus, a prepro-
cessing algorithm capable of noise removal from the signal
is necessary, and such an algorithm can be applied to either
one-dimensional IQ data or two-dimensional time-frequency
images. The U²-Net is a deep learning model devised for
salient object detection, capable of identifying and segmenting
the most significant object in an input image [5]. By training
this model on time-frequency images of radar signals, we
can isolate and restore the radar signal, leading to an image
with substantially reduced noise. The model is built on an
encoder-decoder structure resembling U-Net, enhanced with a
module known as the Residual U-Block. The encoder extracts
unique features from the image and the decoder uses these
to restore the image’s original dimensions. The Residual U-
Block, with an input convolution layer and a U-Block, plays a
pivotal role in this process by creating an intermediate map of
local features, which is used to learn multi-scale contextual
information from the data. The outcome is a feature that
combines local and multi-scale attributes, used as input for
the next block in the process.

III. PROPOSED METHOD

A. Network Description

Fig. 1 presents a block diagram of the algorithm em-
ployed in this study. Initially, the received LPI radar signal
is converted into a time-frequency image utilizing the CWD
algorithm. CWD is a time-frequency representation used to
analyze non-stationary signals. It is defined by the following
integral:

CWD(t, f) =

∫ ∫
x(u+

v

2
)x∗(u− v

2
)Φ(v, t− u)

e−2πifv du dv

(1)

where x(t) is the signal, and Φ(v, t) is the Choi-Williams
kernel. The kernel function Φ(v, t) controls the trade-off
between time and frequency resolution, reducing cross-term
interference. Each resultant CWD image possesses unique
features dictated by the radar waveform. To mitigate the noise

(a) Received signal (b) Transmitted signal (c) Reconstructed signal

Fig. 2: CWD images of the LFM signal with an SNR of -6dB.
(a) is the received signal CWD image, (b) is the transmitted
signal CWD image, and (c) is the reconstructed signal CWD
image.

present in the image, the CWD image is fed into the U²-
Net model. The input to the current algorithm comprises the
received signal with added noise, with the objective of the U²-
Net model being to restore the noise-free transmitted data. To
achieve this, both the transmitted and received data are utilized
in the training phase of the U²-Net, while only the received
data is used as input in the testing phase. Consequently, the
U²-Net model reconstructs the image, filtering out the noise to
produce an image that only contains the radar signal. Fig. 2
depicts the received, transmitted, and reconstructed images of
LFM signal with a SNR of -6dB. The received image shows
a strong noise influence, making the LFM pattern challenging
to discern. However, in the U²-Net reconstructed image, most
of the noise has been eliminated, making it closely resemble
the transmitted image. Finally, this denoised CWD image is
used as input to the CNN. The CNN comprises two parts:
one section that extracts the features of the input image, and
another section that classifies the type of input image based on
the extracted features. The type of waveform corresponding to
each image serves as the correct label for the CNN, enabling
it to classify the waveform type of the input image.

B. Other denoising methods

In this study, we further employed the denoising algorithm
through the use of an autoencoder and U-Net, for the purpose
of comparing performance with the U²-Net-based denoising
technique. The denoising autoencoder is a deep learning
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Fig. 3: Classification performance of CNN models with each
denoising model applied, across an SNR range of -20dB to
6dB, represented using accuracy(%).

model, engineered to restore original data after intentionally
introducing noise into the said data [6]. Meanwhile, U-Net is
a model that has been designed for the purpose of segmenting
distinct objects within the input data [7]. Both of these models
incorporate an encoder-decoder structure where the encoder’s
function is to extract features from the input image, while the
decoder uses the extracted features to recreate the target image.
Additionally, U-Net incorporates a skip connection feature,
which enables the decoder to utilize the features extracted
by the encoder at each step during the image reconstruction
process. Similar to the U²-Net, these two models can accept
noisy input data and are trained to reconstruct clean input
data. Despite the similarities these three models share, such
as an encoder-decoder structure and the capability to reshape
the input image into a specific form, experimental results have
demonstrated that U²-Net performs more effectively in terms
of denoising compared to the other algorithms. The findings of
this comparative study of denoising methods will be discussed
further in the SIMULATION AND DISCUSSIONS section.

IV. SIMULATIONS AND DISCUSSIONS

To evaluate the radar waveform classification performance
based on the denoising model, we generated 12 types of
signals (LFM, Costas, Barker, Frank, T1, T2, T3, T4, P1,
P2, P3, P4). These signals were then transformed into images
using the CWD algorithm and subsequently used as input
for each model. The SNR for each signal spans from -
20dB to 6dB with 2dB increments. Each CWD image has
dimensions of 256*256, with image pixel values normalized
to range between 0 and 1. For each SNR and signal, we
generated 300 data samples with a ratio of 8:1:1 for training,
validation, and testing respectively. The specifics of the dataset
are detailed in Table I. All three denoising models were
trained with the same data, and identical CNN models were
used for waveform classification. For U-Net and U²-Net, we

Fig. 4: RMSE by SNR according to the denoising model. The
RMSE of each pixel value is calculated between the target
image and the model’s output image.

TABLE I: Detailed information on the Dataset

Parameter Assignment
Classes LFM, Barker, Costas, Frank, P1˜P4, T1˜T4

Number of train datasets 40320
Number of validation datasets 5040

Number of test datasets 5040

used models consistent with those employed in [7] and [5]
respectively. The autoencoder, on the other hand, is composed
of five convolutional layers with a 3x3 kernel. We gauged
performance using the classification accuracy, obtained when
the CNN model used the data processed by each denoising
model as input. Moreover, to assess how effectively each
denoising model reconstructed the target image, we computed
the Root Mean Squared Error (RMSE) between the target
image and the output image produced by the model. The
formula for RMSE is defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

yi represents the pixel value of the target image, and ŷi denotes
the pixel value of the output image.

The classification accuracy of the CNN model, as depicted
in Fig. 3, presents a comparison among scenarios involving
no application of a denoising model, and those utilizing an
autoencoder, U-Net, and U²-Net. Without any denoising model
applied, the accuracy rate drops to the lowest among all
methods, particularly plummeting when the SNR dips below -
12dB. At an SNR below -16dB, the accuracy falls below 60%.
The autoencoder and U-Net models produce nearly identical
accuracies across all SNRs. Both methods significantly out-
perform the scenario without denoising, achieving over 90%
accuracy for signals above -10dB and still exceeding 60%
accuracy at -18dB. The scenario applying U²-Net achieved
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the highest accuracy across all SNR values, with an accuracy
rate surpassing 90% for signals above -14dB. From these
findings, it’s evident that the application of a denoising model
enhances the CNN model’s classification performance, with
U²-Net showcasing the most significant improvement among
the three models.

Fig. 4 displays the RMSE values according to SNR for each
denoising method. For all three cases, as the SNR decreases,
there is a tendency for the RMSE values to increase. The
RMSE values appeared highest for Autoencoder, followed by
U-Net, and then U²-Net. Comparing the autoencoder and U-
Net, there’s negligible difference in classification accuracy,
despite U-Net’s relatively lower RMSE value. Conversely,
U²-Net achieves the lowest RMSE value and the highest
classification performance, indicating that the RMSE value
discrepancy does not necessarily dictate the classification
model’s performance.

V. CONCLUSION

In this study, we examined the influence of applying denois-
ing via deep learning models (U²-Net, U-Net, autoencoder)
on the classification of waveforms, using CNN on 12 types of
LPI radar CWD images. Experimental results demonstrate that
U²-Net-based denoising yields the most effective classification
performance, achieving over 90% accuracy for signals above
-14 dB. Even at the lowest SNR of -20dB, the difference in
classification performance is approximately 40% compared to
a scenario without a denoising model.
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