
Abstract— This paper proposes a structured pruning-
network architecture search (NAS) algorithm for a lightweight 
deep-learning radar foot gesture recognition in a conventional 
lightweight deep-learning models to quantitatively evaluate its 
performance. Our goal is to recognize foot gestures using a CW 
radar, generate their STFT unique signatures, and build a foot 
gesture recognition system that could be implemented on an 
edge device. The proposed scheme shows that model size and 
FLOPs were reduced, and a sub-optimal lightweight model for 
a foot gesture recognition device based on MobileNet was 
obtained with a slight decrease in accuracy. 
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I. INTRODUCTION 
Radar sensors for gesture recognition have  many 

advantages over conventional vision sensors, addressing 
issues such as high cost, a challenging depth estimation, the 
immunity to an external perturbation such as weather, light, 
and vibration and so on While radar-based gesture 
recognitions employing deep learning techniques has been 
studied, most of them  have predominantly relied on huge and 
deep  neural networks [1-4], which may not be suitable for 
edge device deployment, such as smart trunk systems or smart 
buildings, where a radar based foot gesture recognition  is a 
promising applications. This paper aims to develop a 
lightweight neural network for a radar-based gesture 
recognition for  a real-time smart standalone device, achieving 
enhanced accuracy while minimizing computational power. 
This  is done through  integrating lightweight neural networks 
and network pruning techniques. 

II. RELATED WORKS 
Gesture recognition has been a prominent challenge 

within the field of computer vision even before the rise of 
deep learning, and various methods have been researched and 
developed for gesture sensing without of deep learning 
techniques [5]. Building upon these classical efforts, the post-
golden era of deep learning has seen further endeavors to 
enhance gesture sensing accuracy by integrating deep 
learning techniques. Concurrently, various research aimed at 
developing lightweight deep learning models specifically for 
gesture recognition have been flourishing. M. Zhang et al. 
have designed a lightweight network deployable on ARM 
devices for a hand gesture recognition [6], and B. 
Leelakittisin et al. has proposed a more lightweight CNN 
network using the Joint Classification with Averaging 
Probability technique for a hand gesture recognition [7]. In 
addition to gesture recognition, there is a vigorous 
exploration of method to lightweight deep learning itself, 

with focusing on techniques deployable in mobile and touch-
based sensing applications [8].  

A. A Lightweght CNN 
Lightweight deep-learning networks are architecturally 

designed for mobile and edge devices to enable the 
utilization of deep learning. In contrast to deep and heavy 
models like VITs (Vision Transformer), lightweight 
architectures sacrifice some accuracy but offer compact 
model sizes and reduced computational demands. Examples 
of such lightweight networks include MobileNet [9-11], 
EfficientNet [12-13], and SqueezeNet [14]. In this paper, we 
investigate that these architectures facilitate efficient 
deployment on resource-constrained platforms while 
catering to the needs of mobile and edge-based deep 
learning applications. 

B. Neural Network pruning 
    The Lottery Ticket Hypothesis, introduced by Frankle et 
al. [15], has paved the way for developing diverse network 
pruning techniques. These methods encompass Structured 
Pruning [16-18], Unstructured Pruning [19], Quantization 
[20], Knowledge Distillation [21], and Neural Architecture 
Search (NAS) [22], among others. 

III. A RADAR-BASED FOOT GESTURE RECOGNITION SYSTEM 

A. A Continuous Wave(CW) radar 
A CW radar is an effective method for non-contact gesture 

recognition thanks to its high sensitivity and robustness to 
environmental variations. It provides sensitive detection of 
target movement by utilizing high-frequency radio waves. 
Furthermore, due to its simple hardware architecture and 
signal processing, it is suitable to gesture recognition edge 
devices in terms of resource efficiency. A CW radar system 
can be expressed as equation.(1). 

 X(t) = A* exp(j2pπft) (for 0 ≤ t ≤ T),  (1). 

Here, A* represents the amplitude of the transmitted 
signal, and f denotes the operating frequency in a time-limited 
time domain T. The received signal of a CW radar reflected 
by any motion is given by Equation (2). The received signal 
suffers from the frequency shift caused by the Doppler effect 
due to a motion, as well as the amplitude and phase affected 
by the Radar Cross Section (RCS) of a  moving object. 

 Y(t) = A# exp(j2π(f-∆f) t+ ϕ#), (2). 

Here, A# represents the magnitude of the received signal 
reflected by a motion in a CW radar, ∆f denotes the Doppler 
frequency shift caused by a motion, and ∆ and ϕ’ respectively 
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denote the round-trip propagation time between a foot and the 
radar, and the phase variation due to a motion. The output 
signal of CW radar caused by a foot motion is a baseband beat 
signal extracted through complex mixing using a mixer device 
and a low-pass filter (LPF). Equation (3) represents the beat 
signal S(t) corresponding to a foot motion. 

 S(t)=A exp (j2π∆f t + ϕ) + N0  (3). 

Here, A represents the product of the amplitudes of the 
received and transmitted signals in the CW radar.  

B. The Short Time Fourier Transform (STFT) 
The input signal of deep learning models is a radar feature 

signal capable of distinguishing various gestures.  The time-
frequency spectrogram of the radar beat signal, which 
corresponds to  each foot gesture,  is used as a radar feature 
signal. To extract its radar feature signal each  foot gesture, 
the STFT is applied to the radar beat signal, obtaining a radar 
signature corresponding to  each foot gesture in the time-
frequency domain. Equation (4) represents the calculation 
formula for the STFT of the radar beat signal caused by 
gestures. 

 F(t′, u) = ∫S(t)w(t′-t)exp(−j2πtu) ′, (4). 

Here, w indicates window function, where t′ is time axis 
and u is frequency axis in spectrogram. This equation implies 
that for every foot gesture input, a unique spectrogram exists 
that can be applied for a foot gesture recognition. 

IV. EXPERIMENTS 
In our previous research,  a foot -gesture recognition 

employing machine-learning like Support Vector 
Machine(SVM) and deep-learning such as AlexNet, 
GoogleNet, and ResNet  has been developed [23]. This paper 
intends to develop a radar   based foot gesture recognition 
based on a lightweight deep-learning model  by using hybrid 
network pruning scheme of a deep learning model. The 
MobileNetV3 small and MobileNetV2 [10-11] are used as  
backbone networks for a foot-gesture recognition. 

A. Data Gathering and Preprocessing 
A Continuous Wave (CW) radar is used for a foot gesture 

recognition, which is operating at a frequency of 24GHz, with 
a bandwidth of 300MHz, maximum output power of 1mW, 
and a maximum beam width of 120 degrees. Radar data for 
four types of foot gestures (kick, swing, slide, and tap) were 
obtained. The acquired radar beat signals were transformed 
into  their radar feature images of size 227×227 through the 
STFT.  A total of 3,500 images were collected, comprising 
600 images for training and 100 images for testing per class. 
Additionally, 20% of the training data was allocated for 
validation purposes. Fig 1 shows  its typical example image of 
each class. 

 
Fig. 1. Radar STFT signatures for 4 kinds of foot gestures and 1 object 

B. A lightweight foot-gesture recognition based on Mobile 
Deep-learning Network 

Each backbone network is used for a lightweight foot-
gesture recognition. During training each backbone network, 
Adam optimizer and Cross-Entropy loss are used as the 
hyperparameters, with an appropriate number of epochs 
given for the network to sufficiently learn. Plus, the training 
and validation accuracies and losses were monitored to 
prevent occurrences of overfitting and underfitting. Table 1 
shows the training result of the Backbone deep-learning 
network. 

TABLE I.  RESULT OF BACKBONE NETWORK TRAINING 

MobileNet 

Version 

Accuracy Precision Recall F1 Flops Capacity 

V3 0.906 0.918 0.906 0.906 71M 5.93 MB 

V2 0.944 0.945 0.944 0.944 373M 8.74 MB 

C. Pruning Based NAS 
A pruning-based NAS is more straightforward and 

convenient compared to conventional NAS methods that 
employ reinforcement learning to explore network 
components within the search space [22]. This is because a 
pruning-based NAS leverages existing architectures by 
extracting required network structures from them, rather than 
performing a complete search. In this paper, focusing on the 
backbone, structured pruning is applied to discover a sub-
optimal network structure suitable for an edge device 
deployment. The pruning method involves cutting a redundant 
network from the top-level architectures of the model with 
keeping the structure of the backbone. Fig 2 shows the 
structured pruning NAS algorithm, 

 
Fig. 2. The proposed structured Pruning NAS Algorithm 

Our proposed Structured pruning NAS is performing  
iteratively removing architectural elements starting from the 
top-level structures and progressing towards those closer to 
the classifier, until all the structures have been eliminated. A 
series of necessary network blocks are obtained until a 
predetermined threshold of accuracy and loss is satisfied. 
These top-level structures can be adjusted based on the 
model's characteristics, allowing for further exploration of 
lower-level structures or by criteria considering the system 
and performance requirement at the block level.  
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Table 2 shows the performance evaluation and hardware 
requirement of a foot-gesture recognition based on  the 
proposed structured pruning NAS algorithm. 

TABLE II.  RESULT OF BACKBONE NETWORK TRAINING 

MobileNet 

Version 

Accuracy Precision Recall F1 Flops Capacity 

V3 0.938 0.941 0.938 0.937 36M 0.78 MB 

V2 0.95 0.951 0.95 0.950 172M 0.58 MB 

A significant enhancement in overall both model size and 
FLOPs is obtained,  even though a slight tradeoff in terms of 
accuracy. 

V. COCNLUSION 
This paper collects foot gestures data using a Continuous 

Wave (CW) radar and transforms their collected data into their 
radar signatures by means of the Short-Time Fourier 
Transform (STFT)  processing. These radar signatures are 
used as a dataset for the selected lightweight backbone 
networks, including MobileNetV3, MobileNetV2.  Structured 
pruning NAS of the multiple layer architectures of in 
conventional lightweight backbone networks results in even 
more lightweight models due to the reduction of their network 
multiple layers. As an experimental result, the proposed 
MobileNetV2 exhibits a notable performance, reducing the 
model size to 15% of the backbone's size and lowering FLOPs 
by 42.9 with a nearly same  accuracy. We will leverage 
quantization techniques to secure even more lightweight 
gesture recognition models. 
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