979-8-3503-1327-7/23/$31.00 ©2023 IEEE

Dual Adaptive Data Augmentation
for 3D Object Detection

Joohyun Leel, Jin-Hee Lee?, Jae-Keun Lee?, Je-Seok Kim?, Soon Kwon

2,3,%

*

, and Sangdong Kim!?

LDepartment of Interdisciplinary Engineering, DGIST, Daegu, Republic of Korea
2Division of Automotive Technology, DGIST, Daegu, Republic of Korea
3FutureDrive, Daegu, Republic of Korea

Abstract—This paper proposes Dual Adaptive Data Augmen-
tation (DADA) method for 3D object detection. Training deep
learning models requires large amounts of data, which is time-
consuming and expensive. To address this challenge, data aug-
mentation methods have been proposed to generate augmented
objects. However, conventional methods rely on fixed parameters
and ignore scene and object characteristics. To address these
limitations, we propose DADA, which consists of two modules:
Scene-based ADA and Density-based ADA. Scene-based ADA
adjusts augmented objects based on the distribution of Ground
Truth (GT) objects in each scene, allowing augmentation to focus
on sparse scenes with fewer GT objects while keeping overall
data volume. Density-based ADA utilizes LiDAR characteristics
to apply different sampling methods, generating diverse aug-
mented objects based on object density. Experiment results show
considerable improvement in performance on the KITTI and
ONCE datasets.

Index Terms—3D Object Detection, Data Augmentation, Li-
DAR

I. INTRODUCTION

LiDAR-based 3D object detection models have demon-
strated remarkable performance across various real-world ap-
plications such as autonomous driving, security, and the overall
ICT industry. These object detection models typically require
large amounts of annotated data for effective training. Espe-
cially in 3D object detection for the real-world domain, there
are various real-world datasets. Most of these datasets are
autonomous driving datasets [1], [2], [3] that cover a variety
of driving scenarios. However, the process of generating these
datasets can be time-consuming and expensive to collect
and process data. To solve this problem, data augmentation
techniques have been widely used to generate new training
data by changing the existing annotated GT data without
significant costs.

Data augmentation techniques for 3D point clouds are still
less studied than those for 2D images. The general data
augmentation techniques for point clouds include the global
augmentation, which generates data with changes such as
translation and rotation for all points, and the local aug-
mentation, which generates augmented GT-based objects with
translation and rotation for GT objects. In addition, there are
data augmentation techniques that generate data by pasting
objects from other point clouds, such as GT Sampling. These

*Corresponding authors: Soon Kwon soonyk@dgist.ac.kr, Sang-
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Fig. 1: The left and right figures show the KITTI training dataset
before and after applying Scene-based ADA, respectively. The green,
blue, and red boxes are the bounding boxes of the car, pedestrian,
and cyclist classes, respectively. In the right figure, two cars and two
pedestrians were augmented.

Fig. 2: The two figures at the top show the results of downsampling
with Density-based ADA for the car class of the KITTI training
dataset, and the two figures at the bottom show the results of
upsampling with Density-based ADA for the pedestrian class of the
KITTTI training dataset.

data augmentation techniques have the effect of increasing
the training data through additional data generated from GT
objects and improving the performance of 3D object detec-
tion. However, existing data augmentation techniques utilize
invariable GT-based objects and rely on fixed parameters to
apply the same technique to all scenes. Existing techniques
focus on generating diverse scenes rather than diverse objects.
We have observed that generating diverse objects and focusing
on sparse scenes to augment diverse objects are more effective
than training diverse scenes. In this paper, we propose DADA,
a data augmentation technique that can generate diverse aug-
mented objects for each scene by considering two key factors:
scene and point density.

DADA is composed of Scene-based Adaptive Data Aug-
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Fig. 3: Histogram for the number of objects which are car (vehicle
in ONCE), pedestrian, and cyclist per scene in KITTI (left, blue) and
ONCE (right, green) training datasets.

mentation (Scene-based ADA) and Density-based Adaptive
Data Augmentation (Density-based ADA). Scene-based ADA
is a technique that adaptively adjusts the augmentation accord-
ing to the distribution of the objects in each scene. As shown
in Fig. 3, the KITTI and ONCE datasets have unbalanced
distributions in the number of objects in each scene. Existing
techniques do not effectively respond to the varying number of
objects in different scenes, and naively apply fixed parameters
for object augmentations for each object class to all scenes. In
contrast, as shown in Fig. 1, the Scene-based ADA approach
determines the number of augmented data by considering the
number of GT objects in the scene, so that data with fewer
GT objects can be intensively augmented, and every scene
contains a variety of objects.

While Scene-based ADA is about how many augmented
objects to utilize, Density-based ADA is about how to generate
augmented objects. Unlike 2D images from cameras, 3D point
clouds from LiDAR are scale-invariant, depth-enabled, and
characterized by sparse data. These features make them easier
to distinguish between the background and the objects, which
makes it possible to apply data augmentation to individual
objects. In order to generate augmented objects, we propose
Density-based ADA, a technique that diversifies data by in-
tegrating downsampling and upsampling strategies that utilize
the characteristics of LiDAR according to the point density
of the object. Conventional GT Sampling is not efficient for
data augmentation because GT objects are reused without any
changes. On the contrary, as shown in Fig. 2, our technique
leverages the LiDAR characteristics to perform more adaptive
sampling according to the object density, which can generate
new sparse objects from dense ones and vice versa while
preserving their shapes. This approach enables efficient data
augmentation by generating new and diverse data from existing
data and utilizing it for training.

We can summarize our contributions as follows:

o We have observed that focusing augmentation on sparse
scenes by generating diverse objects from GT objects
and adaptively adjusting the data augmentation per scene
leads to significant performance gains.

e Our method can be applied to a variety of 3D object
detection models, all of which performed well on the
KITTI and ONCE validation datasets.

o In particular, it is noteworthy that our DADA can replace
GT Sampling, which is used by most models in Open-

PCDet, a huge open-source project for LiDAR-based 3D
object detection, and our experiment results are superior
in the evaluation of all classes and various conditions
(KITTI metric, ONCE metric) compared to GT Sampling.

II. RELATED WORK
A. Data Augmentation

Data augmentation is a technique that generates additional
training data from existing one to prevent overfitting and
improve performance when training on a limited dataset. For
instance, in the 2D image domain, there are Cutout [4], which
augments an image patch by cutting out a portion of it, and
Mixup [5], which mixes two images and labels. There is also
CutMix [6], which combines these two techniques to augment
a portion of an image by replacing it with a patch from another
image.

In addition, there are also alternatives that apply techniques
from the 2D domain to the 3D domain, such as PointMixup
[7], which applies Mixup to a point cloud. Another pro-
posed technique [8] involved upsampling from lower resolu-
tion points to increase resolution. SECOND [9] proposed a
new data augmentation technique called GT Sampling. The
technique involved cropping individual objects from each
scene to create a GT database. During training, each scene
is augmented by pasting objects from other scenes in the
database. On the other hand, [10] introduced a technique
that performs a global data augmentation on all points in a
scene and subsequently a local data augmentation on each
object. Real3D-Aug [11] proposed a technique to properly
localize and handle the occlusion when performing the data
augmentation. [12] proposed contextual GT Sampling that
utilizes the semantic information to address data imbalances.
LiDAR-AUG [13] proposed a technique for adding a CAD
model to a scene and generating an augmented LiDAR point
cloud through a rendering module. PA-AUG [14] divided the
object into multiple partitions and probabilistically applied
the existing local data augmentation to each partition region,
which not only improved the accuracy of the given dataset but
also performed well on corrupted data. Similar to PA-AUG,
SE-SSD [15] divided the object into six pyramid shapes and
performed dropout, swap, and sparsify operations on each of
them to augment the data. PPBA [16] found that previous
data augmentation techniques were manually designed. PPBA
automated data augmentation techniques to find the optimal
parameters. PointAugment [17] also utilized an adversarial
learning strategy to automatically optimize and augment point
clouds.

We found that existing data augmentation studies are di-
vided into two categories, creating various objects from GT
objects and augmenting GT objects with other scenes. In
response, we propose DADA, which adaptively improves and
integrates these two categories.

B. 3D Object Detection

3D object detection is the task of classifying and localizing
objects by taking a point cloud as input, which is a set of points
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Fig. 4: The overall architecture of Dual Adaptive Data Augmentation method.

obtained by a LiDAR laser scan. As in 2D object detection,
it is divided into one-stage and two-stage detectors depending
on whether the region proposal is separated or not. VoxelNet
[18] is a one-stage baseline model that performs end-to-end
3D object detection. Starting from VoxelNet, various models
have been proposed. SECOND used sparse convolution instead
of dense convolution to improve speed according to the
sparse nature of LiDAR point clouds. In addition, SECOND
addressed the issue in VoxelNet where large loss values are
obtained when in the same bounding box but the direction
is opposite. SECOND created an angle regression loss that
can solve this problem and proposed GT Sampling as a data
augmentation technique to improve performance. PV-RCNN
[19] is a two-stage model that utilizes both voxel and point
methods. The voxel-based method proposes high-quality 3D
objects, and the point-based method reduces information loss
to maximize the preservation of location information and
improve detection performance. Finally, Voxel R-CNN [20],
like PV-RCNN, is a two-stage model and utilizes voxels to
reduce the computational cost, with the finding that accurate
localization of points is not essential for 3D object detection,
and achieves performance beyond that of point-based models
by utilizing voxels.

We utilized the existing novel models PV-RCNN, SECOND,
and Voxel R-CNN to verify the performance of the proposed
DADA method.

III. DUAL ADAPTIVE DATA AUGMENTATION
A. Overview

As opposed to existing techniques based on fixed param-
eter values, our goal is to enhance the data augmentation
to adaptively augment the training dataset, maximizing its
efficacy in training 3D object detection models and improving
the detection performance. As shown in Fig. 4, our proposed
Dual Adaptive Data Augmentation includes two adaptive data

augmentation techniques. Each adaptive data augmentation
consists of Density-based ADA for generating augmented
objects and Scene-based ADA for utilizing augmented objects
with a database of augmented objects created by Density-based
ADA. These two techniques form one efficient pipeline for
data augmentation, DADA.

B. Density-based Adaptive Data Augmentation

We propose Density-based ADA, a downsampled and up-
sampled point generation technique that utilizes the charac-
teristics of LiDAR to generate various data. For the points of
the existing GT object, we simulate the points according to
the LiDAR characteristics while maintaining the shape, and
proceed with downsampling or upsampling according to the
point density. This generates difficult objects from dense points
and easy objects from sparse points, forming an augmented
database including Density-based objects.

In order to describe the distribution of points in a LiDAR
laser scan, our method performs a coordinate transformation
from the orthogonal coordinate system, which is the coordinate
system traditionally used by point clouds, to a spherical
coordinate system to easily express the angles of the points.
After that, we perform sampling according to the LiDAR
characteristics. For example, the Velodyne HDL-64E LiDAR
sensor used to acquire the KITTI dataset [1] has a vertical
resolution of 0.4 degrees and a horizontal resolution of 0.08
to 0.35 degrees (SHz to 20Hz). Also, the 40-beam LiDAR
sensor used to acquire the ONCE dataset [3] has a vertical
resolution of 0.33 degrees and a horizontal resolution of 0.2
to 0.4 degrees (10Hz to 20Hz). According to the LiDAR
characteristics of the acquired data, the object is evenly sliced
and sampled with the corresponding LiDAR resolution. Since
our proposed technique describes a LiDAR laser scan, it can
maintain its shape even after sampling, and its performance
can be improved by generating robust data for training.

1734



Density-based Adaptive Data Augmentation

/ z z /]::j::“ ?ﬂu—:\
M
Point Point e e LT e
Gy Q) E:'\> Distance < Threshold :> i N o I:{> g N i
LiDAR Points Downsampled Points
Y :D Y
T | T
/]::__LE‘ ?ﬂ—lﬁ_\_\
LT | T L] T
Distance > Threshold | B e R Y
x X : (===
i E—— L —L ]
Orthogonal Spherical ™ ™
\Coordinate System Coordinate System LiDAR Points Upsampled Points/

Fig. 5: The detailed process of Density-based Adaptive Data Augmentation.

Specifically, as shown in Fig. 5, a point p of the point cloud
is first represented as (z,y, z) in the orthogonal coordinate
system. To apply vertical and horizontal angle resolution, we
convert point p to (r, ¢, #) in the spherical coordinate system
so that it can be expressed in terms of distance and angle.
The (r,,0) of point p using the LiDAR as the origin are
calculated as follows:

r=+/z2+y2+ 22 (D

0 = arctan <:c2;—|—y2> ()
_ Y
¢ = arctan (x) 3)

After converting to (r, ¢, 0), the points of the object can
be represented by simulating them at the resolution of the
LiDAR. Then we denote which horizontal and vertical scans
include each point on the grid, and the grid is horizontally
and vertically sliced to remove or generate points of the object.
Through this sampling, the natural point features generated by
LiDAR can be represented as they are, and the points can be
adjusted while maintaining the shape of the object in contrast
to conventional sampling techniques. By training the sampled
points of these objects, Density-based ADA can generate
various samples rather than just reusing the GT objects for
training in conventional techniques.

C. Scene-based Adaptive Data Augmentation

We propose Scene-based Adaptive Data Augmentation,
which generates augmented objects through Density-based
ADA to create a database, then adjusts their number according
to the number of GT objects by considering the situation of
each scene.

First, we adaptively adjust the number of augmented ob-
jects based on the number of GT objects for each scene.
The model is trained through Scene-based ADA by adding
more augmented objects for scenes with fewer objects and,
conversely, by adding fewer augmented objects for scenes with
more objects. As shown in (4), the sum of the number of GT
objects and the number of augmented objects for a scene can

be set as a parameter called K to adaptively adjust the data
augmentation for sparse and dense scenes.

SGT.0bj + SAug.0bj = K 4)

Second, Scene-based ADA is performed by utilizing the aug-
mented database created by the Density-based ADA technique.
The augmented database is created by downsampling and
upsampling the points divided by distance for dense and sparse
GT objects, respectively. Then we determine the number of
augmented objects through the parameter K and proceed to add
them to the existing GT data, augmenting the training scene.
For each scene, Density-based objects that do not overlap with
GT objects are extracted from the augmented database and
placed so that there are a total of K objects, by combining the
number of GT and augmented objects. We created training
data augmented with Scene-based ADA and utilized data for
training to improve performance.

IV. EXPERIMENTS
A. Implementation detail

Our technique is trained and evaluated on PV-RCNN,
SECOND, and Voxel R-CNN as 3D object detection models.
Our implementation is based on OpenPCDet [21], an open-
source platform for LiDAR-based 3D object detection that
supports all of these models. All models were trained and
evaluated on 8 NVIDIA TITAN X machines with 80 epochs.
The IoU thresholds in the KITTI’s evaluation were set to 0.7,
and 0.5 for car, and pedestrian classes, respectively, and the
evaluation was divided into easy, moderate, and hard according
to the KITTI metric. On the other hand, the IoU thresholds
in the ONCE’s evaluation were set to 0.7, 0.3, and 0.5 for
vehicle, pedestrian, and cyclist classes, respectively. In the
case of Voxel R-CNN, only the car class was considered for
training and evaluation because the original architecture based
on OpenPCDet was utilized. For the cyclist class in the KITTI
dataset, we considered only car and pedestrian classes because
it does not guarantee the consistency of performance due to
class imbalance.

To compare the performance of Scene-based ADA with
the existing data augmentation without Scene-based ADA,
we need to keep the total number of objects augmented for
training similar in both methods. As shown in Fig. 3, we
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TABLE I: 3D object detection performance results for the car and pedestrian classes on the KITTI validation dataset for a model trained by
augmenting only certain scenes. The best performance values per model are bolded.

Model Data Augmentation APcqr APpeq Avg.
Scene Distribution Easy = Moderate  Hard Easy = Moderate  Hard Car Pedestrian
w/o GT Sampling  88.83 78.98 78.40  65.66 59.64 57.27  82.07 60.86
PV-RCNN [19] Dense Scenes 89.26 79.12 78.55 6795 61.57 56.93 82.31 62.15
Sparse Scenes 89.35 79.33 78.79 67.28 62.05 5791  82.49 62.41
w/o GT Sampling  86.23 75.53 72.74 51.06 47.01 44.36  78.17 47.48
SECOND [9] Dense Scenes 87.85 77.28 74.70  56.20 53.04 48.68 79.94 52.64
Sparse Scenes 88.45 77.88 76.59  57.54 53.60 4895  80.97 53.36

TABLE II: 3D object detection performance results evaluated on the KITTI validation dataset for the car and pedestrian classes. The best

performance values per model are bolded.

Model Data Augmentation APcar APpeq Avg.
Scene Density Easy = Moderate  Hard Easy = Moderate = Hard Car Pedestrian
w/o GT Sampling  88.83 78.98 78.40 65.66 59.64 57.27  82.07 60.86
w/ GT Sampling 89.01 79.18 78.57  63.65 57.31 53.14 82.25 58.03
PV-RCNN [19] v X 89.43 79.25 78.67  65.55 59.31 54.42  82.45 59.76
X 4 89.39 79.24 78.64 67.51 59.41 56.41  82.42 61.11
4 4 89.30 79.39 78.84  68.58 62.57 57.32  82.51 62.82
w/o GT Sampling  86.23 75.53 72.74  51.06 47.01 44.36  78.17 47.48
SECOND [9] w/ GT Sampling 88.09 78.28 76.81  56.73 53.53 47.78  81.06 52.68
4 4 88.61 78.23 76.98  58.75 53.40 49.12  81.27 53.76
w/o GT Sampling  89.02 78.95 78.19 - - - 82.05 -
Voxel R-CNN [20] w/ GT Sampling 89.38 79.26 78.53 - - - 82.39 -
v v 89.49 79.31 78.66 - - - 82.49 -

identified the distribution of objects in each class in the KITTI
training dataset of 3,712 frames to similarize the number of
augmented objects. The K value for training with Scene-based
ADA was set to 19 and 11 for car and pedestrian classes,
respectively, while training without Scene-based ADA was
performed with a fixed number of augmentations for each
scene, 15 and 10 for each class. Same as KITTI, for the
ONCE training dataset of 4,961 frames, the K value was set
to 26, 4, 4, 13, and 16 for car, bus, truck, pedestrian, and
cyclist classes, respectively, while the GT Sampling’s fixed
parameter value was set to 9, 3, 3, 10, and 10. In addition,
for the performance evaluation of Density-based ADA, we
experimented with various distance thresholds, defining a
threshold based on 30 meters as a reference for distance-
specific evaluation in the Waymo Open Dataset [2].

B. Overall results

Before evaluating the performance of Scene-based ADA,
we first verified the effectiveness of data augmentation in
dense and sparse scenes. Table I shows the results for the car
and pedestrian classes, performed under three different setups:
without GT Sampling, with dense scenes, and with sparse
scenes augmentation, respectively. As in Scene-based ADA,
we kept the number of augmented objects in dense and sparse
scenes similar. Moreover, in the dense scenes setup, we have
performed data augmentation only in dense scenes and none
in sparse scenes, and vice versa for the sparse scenes setup, as
listed on Table I. From the results in Table I, we can observe
that both PV-RCNN and SECOND have better augmentation
effects for sparse scenes except for the easy pedestrian class
in PV-RCNN. We have confirmed the significance of applying

adaptive augmentation according to the object distribution in
the scenes and hence proposed a Scene-based ADA.

In Table II, we conducted a performance evaluation for
three distinct cases: when GT Sampling was not applied, when
existing GT Sampling was applied, and when DADA was
applied. In the case of the car class, all of them achieved
better performance than conventional GT Sampling except for
SECOND’s moderate car class. In particular, SECOND’s easy
car class improved by 0.52 AP compared to the existing GT
Sampling. In addition, PV-RCNN’s easy car class improved
by 0.18 AP from 88.83 AP without GT Sampling to §9.01
AP with GT Sampling, and by 0.29 AP from 89.30 AP with
DADA, which is a remarkable result. For the pedestrian class,
the results are even more notable. Specifically, in the case of
the pedestrian class, our proposed DADA method improves the
performance of the easy pedestrian class by 4.93 AP compared
to the traditional GT Sampling, while the traditional fixed GT
Sampling in PV-RCNN has even degraded the performance
compared to the one which is not applied GT Sampling.

PV-RCNN in Table II shows additional results to prove the
effectiveness of the combination of Scene-based ADA and
Density-based ADA in the DADA technique. Each row lists
experiment results with the different setups in the following
order: without GT Sampling, with conventional GT Sampling,
Scene-based ADA only, Density-based ADA only, and full
DADA in the PV-RCNN model. It can be observed that the
performance is still excellent when only one of Scene-based
or Density-based ADA is applied, and even greater when both
are applied, showing the superiority of DADA.

Table III and Table IV show that our proposed DADA gen-
eralizes the excellent performance on another dataset, ONCE.
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TABLE III: 3D object detection performance results evaluated on the ONCE validation dataset for the vehicle, pedestrian, and cyclist classes.

The best performance values per model are bolded.

Model Data Augmentation 0-30m 30-50m 50m-
Method Vehicle Pedestrian  Cyclist ~ Vehicle Pedestrian  Cyclist ~ Vehicle Pedestrian  Cyclist
PV-RCNN [19] w/ GT Sampling 87.75 39.12 72.15 71.66 29.28 54.16 56.61 15.99 36.67
w/ DADA 87.75 39.62 73.82 72.15 29.77 56.52 58.90 17.25 37.73
SECOND [9] w/ GT Sampling 83.87 37.71 70.55 64.25 27.79 51.59 47.26 15.11 35.18
w/ DADA 84.02 38.80 71.08 65.30 26.16 53.59 52.44 16.93 35.23

TABLE IV: Overall 3D object detection performance results about Table III. The best performance values per model are bolded.

Model Data Augmentation Overall 0-30m  30-50m  50m-
Method mAP  Vehicle Pedestrian Cyclist ~mAP mAP mAP

w/ GT Sampling ~ 56.09 77.23  30.96  60.08 66.34 51.70  36.42

PV-RCNN [19] w/ DADA 5777 71.64 3390 6176 6706 5281  37.96
w/ GT Sampling ~ 53.68 71.01  32.17  57.86 64.04 47.88  32.52

SECOND [9] w/ DADA 5473 7279 3242 5899  64.63 4835  34.87

As shown in Fig. 3, the ONCE dataset is larger than KITTI,
with more scenes and a wider variety of objects per scene.
For this reason, DADA performs well on ONCE datasets and
generalizes reliably across different classes and distances.

V. CONCLUSION

In this paper, we proposed a Dual Adaptive Data Augmen-
tation (DADA) method to improve the performance of deep
learning models in 3D object detection tasks. DADA consists
of Scene-based ADA and Density-based ADA.

The experiment results show that DADA is an effective data
augmentation method in the 3D object detection task. Our
proposed DADA method has made a significant contribution
by suggesting potential improvements that can be generalized
to any 3D object detection model for the real-world applica-
tions. Future works will further expand the DADA method and
explore its potential applications.
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