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Abstract—Since the working process in the dyeing process is
performed at high temperatures and high pressure, real-time
measurement is difficult. Therefore, for real-time measurement of
the dyeing process, this pH, conductivity, and chromaticity sensor
was additionally installed, and a correlation and prediction model
with the exhaustion rate that can determine the degree of dyeing
completion was implemented based on Automated Machine
Learning (AutoML) regression, and Extra tree with excellent
performance indicators It was predicted using regressor, and the
possibility of energy saving and process optimization was
confirmed.
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L INTRODUCTION

Since most dyeing factories operate dyeing machines in a
high-temperature and high-pressure environment, it was
difficult to check the dyeing status of the fabric in real time
because the dyeing machine fabric inlet could not be opened in
real time due to the risk of accidents caused by burns or pressure.

Therefore, the time and temperature required for the dyeing
process may vary depending on the process know-how of the
operator.

In this paper, a model of the multifunctional complex sensor
that monitors the dyeing process status information in real time
and digitizes the dyeing process is described. The
multifunctional complex dyeing sensor model was developed
based on Automated Machine Learning (AutoML), and the
model implementation process and results are explained.

II.  MODEL OF MULTIFUNCTIONAL COMPLEX DYEING
SENSOR

The multifunctional complex dyeing model measures the
dye solution's three sensor values (pH, conductivity, and
chromaticity) and analyzes the correlation with the exhaustion
rate of dyeing. The structure for calculating the real-time
exhaustion rate using three sensor values was introduced in [1],

(2].

Multifunctional complex staining models can apply various
algorithms based on time series data. However, it is necessary to
develop a learning model through processes such as data
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preprocessing,  segmentation, feature extraction, and
hyperparameter tuning, which are repeatedly performed for each
algorithm. Figure 1 shows a typical machine-learning workflow.

In this paper, an optimized learning model was developed by
applying Automated Machine Learning (AutoML) to develop an
optimized learning model for a multifunctional complex dye
Sensor.

Typical Machine Learning workflow
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Figure 1. Typical Machine Learning Flow
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Figure 2 Automated Machine Learning Flow

Figure 2 shows the AutoML workflow, and it automates
repetitive tasks of general machine learning to perform complex
and repetitive tasks efficiently. AutoML is a Combined
Algorithm Selection and Hyperparameter (CASH) optimization
problem that explores the structure of various models when
given a data Network Architecture Search, finds
hyperparameters of a learning model, and automates the most
appropriate model and variables [3].

For the multifunctional complex dye sensor model, an
optimized algorithm was developed by limiting it to a regression
analysis model specialized for time series data using the Pycaret
library based on the Python scikit-learn package.
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A. Settingup a model

The AutoML model environment was set up for learning
using the setup( ) module. Table 1 shows the learning data
setting information of the multifunctional complex dye sensor.

Table 1. AutoML setting up Environment

Extra Trees Regressor

sklearn.ensemble._forest.ExtraTreesRegressor

AdaBoost Regressor

sklearn.ensemble._weight_boosting. AdaBoostRegr...

Gradient Boosting Regressor

sklearn.ensemble._gb.GradientBoostingRegressor

MLP Regressor

sklearn.neural_network._multilayer_perceptron....

Light Gradient Boosting Machine

lightgbm. sklearn. LGBMRegressor

Dummy Regressor

sklearn.dummy.DummyRegressor

Description Value
Session id 123
Target Target
Target type Regression
Original data shape (1413, 4)
Transformed data shape (1413, 4)
Transformed train set shape (989, 4)
Transformed test set shape (424,4)
Numeric features 3
Preprocess True
Imputation type simple
Categorical imputation mode
Fold Generator KFold
Fold Number 10
CPU Jobs -1
Use GPU False
Log Experiment False

Experiment Name

USI

reg-default-name

2562

The multifunctional complex dye sensor was limited to
various regression analysis models specialized for time series
and was trained, and Table 2 shows a list of regression analyses
applicable to the multifunctional complex dye sensor model.

Table 2. The list of all models available for AutoML training

Name

Reference

Linear Regression

sklearn.linear_model._base.LinearRegression

Lasso Regression

sklearn.linear_model._coordinate_descent.Lasso

Ridge Regression

sklearn.linear_model._ridge.Ridge

Elastic Net

sklearn.linear_model._coordinate_descent.Elast...

Least Angle Regression

sklearn.linear_model._least_angle.Lars

Lasso Least Angle Regression

sklearn.linear_model._least_angle.LassoLars

Orthogonal Matching Pursuit

sklearn.linear_model._omp.OrthogonalMatchingPu...

Bayesian Ridge

sklearn.linear_model._bayes.BayesianRidge

Automatic Relevance
Determination

sklearn.linear_model._bayes. ARDRegression

Passive Aggressive Regressor

sklearn.linear_model._passive_aggressive.Passi...

Random Sample Consensus

sklearn.linear_model._ransac. RANSACRegressor

TheilSen Regressor

sklearn.linear_model._theil_sen.TheilSenRegressor

Huber Regressor

sklearn.linear_model._huber.HuberRegressor

Kernel Ridge

sklearn.kernel_ridge.KernelRidge

Support Vector Regression

sklearn.svm._classes.SVR

K Neighbors Regressor

sklearn.neighbors._regression. KNeighborsRegressor

Decision Tree Regressor

sklearn.tree._classes.DecisionTreeRegressor

Random Forest Regressor

sklearn.ensemble._forest.RandomForestRegressor
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B. Implementing a model,

Using AutoML, the code that recommends the learning
model optimized for the data set is executed. The model with the
best performance can be derived by comparing the MAE, MSE,
RMSE, R2, RMSLE, and MAPE scores of each learning model
result. Figure 3 shows that the model optimized for the multi-
functional complex dye sensor learning model is the Extra Trees
Regressor.

The Extra Tree Regressor model uses the entire training set
for the training data of each decision tree and uses a subset of
features to randomly split the nodes of the tree to reduce variance
instead of increasing bias by increasing diversity and the
computational speed is fast.

Model MAE MSE RMSE R2 RMSLE MAPE TT (Sec)
et Extra Trees Regressor 153031 1344.1371 36.0923 0.9394 0.2700 0.1505 0.5500
f Random Forest Regressor 19.2495 1778.6029 42.0789 0.9199 0.3019 0.1886 0.5460
dt Decision Tree Regressor 17.1882 2196.7022 46.4194 0.9014 0.3458 0.1658 0.5200

lightgbm  Light Gradient Boosting Machine 27.5061  2377.7848  48.5460 0.8923 0.3471 0.2606 0.5320

gbr Gradient Boosting Regressor 35.1464 3020.6549 54.8802 0.8636 0.3752 0.3091 0.5360
knn K Neighbors Regressor 40.5270 44746514 66.6618 0.7975 04254 0.3473 0.5280
ada AdaBoost Regressor 64.6472 6488.1633 80.3955 0.7073 0.5202 0.5509 0.5420

lasso Lasso Regression 751719 9914.0321 99.5507 0.5554 0.5850 0.6497 0.9720

br Bayesian Ridge 751848 99141321 99.5511 0.5553 0.5849 0.6501 0.5200
en Elastic Net 751733  9914.0843 99.5509 0.5553 0.5850 0.6497 0.5440
omp Orthogonal Matching Pursuit 78.4596  10356.8787 101.7326 0.5347 0.6066 0.6984 0.5300
ridge Ridge Regression 76.2409  11019.4232 104.3980 0.5083 0.5865 0.6525 0.9780
llar Lasso Least Angle Regression ~ 81.0107  11149.0860 105.5548 0.4999 0.6233 0.7543 0.5240
Ir Linear Regression 76.3498  11247.2377 105.2854 04986 0.5866 0.6528 1.1880
lar Least Angle Regression 76.3498  11247.2377 105.2854 0.4986 0.5866 0.6528 0.5220
dummy  Dummy Regressor 127.2945 22398.9332 149.6120 -0.0038 0.8036 1.1525 0.5220

huber Huber Regressor 785906 24708.2091 137.9016 -0.0748 0.5913 0.6657 0.5220

par Passive Aggressive Regressor ~ 157.7295 43370.4820 194.3007 -0.9000 0.9964 1.4283 0.5220

Figure 3. list of the Top performing models
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Figure 4 shows the priority order of importance of the three
sensor values used as input variables of the multifunctional
complex dye sensor model, and it can be seen that the
chromaticity value has the best influence in the process of
predicting the target value.
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Figure 5. Feature selection using RFECV
(Recursive Feature Elimination with Cross Validation)

Figure 5 shows Recursive Feature Elimination with Cross
Validation (RFECV) for feature selection using AutoML, and
the highest performance is obtained when a learning model is
created by selecting all pH, conductivity, and chromaticity
values as independent variables of a multifunctional complex
dye sensor model.

C. Training process

Figure 6 shows the learning curve of the multifunctional
complex dye sensor model. It can be seen that both learning
performance and verification performance improve with the
number of times of learning.

Learning Curve for ExtraTreesRegressor
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Figure 6. Learning Curve for the best performing model

Figure 7 shows the verification curve of the Extra Tree
Regressor selected as a multifunctional complex dye sensor
model. Looking at max-depth, as the depth of the tree increases,
the training score and the test score increase, so it can be seen
that a tree depth limit of less than depth 5 levels is necessary.
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Figure 7. Validation Curve for the Best-performing model
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Figure 8. Residual for the best-performing model
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Figure 9. Prediction Error for the best-performing model

Figure 8 is the residual distribution of the multifunctional
complex dye sensor model, and both train and test results are
similarly distributed.

Figure 9 shows the prediction error of the extra tree regressor
model. The R-squared score of the extra tree regressor is a model
with an explanatory power of about 94% accuracy. The accuracy
is higher if the model has more correct predictions.
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III.  RESULT

The multifunctional complex dye sensor learning model was
implemented with the Extra Tree regressor derived based on
AutoML, and the model fit is high through the distribution of
residuals, and it can be seen that there is not much difference
between the predicted result and the actual value.

Figure 10 and Figure 11 show the prediction results using
performance indicators and actual data of the multifunctional
complex dye sensor model.

Model MAE  MSE RMSE R2 RMSLE MAPE

0 Extra Trees Regressor 1.2254 215955 4.6471 09981 00182 0.0053

no concentration configTemp currentTemp sensorTemp Chromatic ph Conductivity Target | prediction_label

0 483 21 80.099998 81 37 1942 42 463 | 32.099998 32.099998

1 463 21 82500000 83 39 1939 42 482 | 34.400002 34.400002

2 463 21 84.900002 85 40 1939 42 484 | 36799999 36.799999

3 463 21 87.300003 87 42 1937 42 484 | 39.099998 40.900000

4 463 21 89.800003 90 43 1937 42 484 | 42700001 40.900000

75 463 21 120.000000 120 61 559 43 513 | 405.000000 405.000000
76 463 21 120.000000 19 61 562 43 512 | 401.399994 401.399994
77 463 21 120.000000 19 61 565 43 512 | 401.399994 401.399994
78 463 21 120.000000 19 62 566 43 512 | 401.399994 401.399994
79 463 21 120.000000 19 61 566 43 513 | 401.399994 401.399994

Figure 10. Prediction results for test dataset

Using the multifunctional complex dyeing sensor, the dyeing
process can be predicted using real-time information about the
dyeing solution, energy can be saved, and the possibility of
process optimization was also confirmed.

—e— Predicted KIS
®- BTKS

200

150

100

0 20 40 60 80 100

Figure 11. Best-performing model predictions
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