
A Study on Imputation-based Online Learning in
Varying Feature Spaces

Jung-Hoon Lee
Electronics and Telecommunications Research Institute

Daejeon, Republic of Korea
jhlee0914@etri.re.kr

Cheol Ho Kim
Electronics and Telecommunications Research Institute

Daejeon, Republic of Korea
kimcheolho@etri.re.kr

Sungyup Lee
Electronics and Telecommunications Research Institute

Daejeon, Republic of Korea
sylee549@etri.re.kr

O.K. Baek
Electronics and Telecommunications Research Institute

Daejeon, Republic of Korea
ok.baek@etri.re.kr

Abstract—In this paper, we propose a new method for online
learning in varying feature spaces (VFS) where the feature
space of instances continually evolves. The proposed method,
termed Online Imputation-based Learning (OIL), first imputes
missing values and subsequently trains a classifier within a
complete feature space. A significant advantage of this approach
is the potential for considerable improvements by leveraging
well-established research in both imputation and classification
techniques. Furthermore, it offers the flexibility to easily modify
model configurations based on specific conditions. The experi-
mental results demonstrate that OIL not only performs compa-
rably or even better than the state-of-the-art rival method in
regularly varying data streams but also in arbitrarily varying
data streams. This is evidenced across 13 benchmark datasets.
Following this, we perform an ablation study under diverse
conditions to further investigate the efficacy and robustness of
various OIL configurations.

Index Terms—online learning, varying feature spaces, imputa-
tion, ensemble learning

I. INTRODUCTION

In recent years, there has been an exponential surge in the
volume of data emanating from diverse sources. Leveraging
traditional batch algorithms to learn and harness these data
streams proves highly inefficient, primarily due to the necessity
of periodic retraining to incorporate new generated data [1].
Beyond this computational inefficiency, storing the entire
data streams for batch learning could precipitate memory
constraints and data security issues, not to mention the myriad
of logistical issues [2].

Given these challenges, the significance of online learning,
which can incrementally learn data streams, is gaining con-
siderable attention. Nonetheless, a prevalent shortcoming of
traditional online learning methods is their assumption of a
static feature space – an assumption often unrealistic in real-
world scenarios. For instance, new data instances might intro-
duce previously unseen features (new features), or they might
lack features that previous instances had (missing features).
Consider the context of a smart factory: sensors with inno-
vative functionalities might be integrated, while existing ones
may malfunction or reach their operational end. Furthermore,

when countless users relay data to servers during IoT services,
the data transmitted often varies subtly in configuration across
users [3], [4]. This challenge is recognized as the varying
feature spaces (VFS), and to fill this gap, several online
learning algorithms have been proposed [3]–[7].

Fig. 1. Illustration of imputation (red zone) and padding (gray zone) process
for data streams with varying feature spaces.

In this study, we explore a new method for learning in VFS,
named Online Imputation-based Learning in varying feature
spaces (OIL). Unlike previous methods that either completely
exclude the imputation process [6], [7] or closely combine it
with the classification process [4], [5], the main idea behind
OIL is to conduct imputation and classification independently.
Specifically, as shown in Fig. 1, OIL applies imputation to
missing features (highlighted in the red zone) and to those
features that have never been observed before, i.e., unob-
served features (highlighted in the gray zone). This process
transforms the data into a complete feature space without
missing features, thereby enabling the deployment of a more
expressive classifier. It’s worth noting that in this paper, we
reframe the VFS problem as a missing value issue, a concept
well-established and familiar. However, it’s surprising that
this foundational perspective hasn’t been extensively explored
within the VFS context.

The rest of this paper is organized as follows: In Section
II, we summarize related works on learning in VFS and
imputation techniques. Section III provides the overall work-
flow of OIL, highlighting its differences from prior methods,

1759979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

and presents a detailed experimental methodologies. We then
present the experimental results of OIL in comparison with the
state-of-the-art (SOTA) method, and we will conduct relevant
analyses in Section IV. The study concludes in Section V.

II. RELATED WORK

Given the significance of data streams with VFS, sev-
eral online learning methods specifically designed for VFS
have recently been proposed [3]–[7]. These methods can
be broadly classified into three categories: passive-aggressive
models (PAM), evolutionary ensemble models (EEM), and
feature correlation models (FCM) [8]. Each has its unique
advantages and disadvantages. Firstly, PAM [4] stands out for
its solid mathematical foundation, often providing closed-form
solutions. However, its performance becomes highly unstable
with even a slight increase in missing features. As a result,
FCM or EEM is usually employed for VFS with many missing
features.

EEM [7] is an ensemble-based method that aggregates
predictions from base models, each created based on individual
features or subsets of features. One notable advantage of
EEM is its robustness. EEM facilitates easy replacement of
base models, enhancing its adaptiveness. However, there are
associated limitations. EEM typically utilizes a few features
for each base model. It is because, when larger subsets of
features are utilized, the number of base models required in
the ensemble can grow exponentially to accommodate diverse
feature space variations. Consequently, only narrow feature
correlation information can be learned.

Lastly, FCM [5] aims to reconstruct a complete feature
space from a given feature subset. This is achieved by closely
integrating imputation and classification processes. Specifi-
cally, the imputation model leverages both the reconstruction
loss and the supervised loss propagated from the classifier
for model updates. While FCM has impressive scalability, its
application across diverse VFS scenarios predominantly relies
on linear classifiers, which inherently presents performance
constraints.

III. EXPERIMENTAL METHODOLOGY

The schema of OIL is shown in Fig. 2(a) and the other
methods mentioned in Section II are illustrated together to
highlight the differences between them. OIL combines the
strengths of both FCM (Fig. 2(b)) and EEM (Fig. 2(c)). More
specifically, by decoupling the imputation process from the
classification process, OIL provides significant flexibility in
classifier selection. Furthermore, OIL can effectively utilize
feature correlation information as the classifier is trained on
the complete feature space. In the following subsections, we
will elaborate further on each step of OIL. The main process
of OIL is implemented based on river [9] and scikit-learn [10]
packages in python.

A. Varying feature space simulation

To validate the practicality of OIL, we selected 13 datasets
that cover a wide range of properties: from small to large sizes,

Fig. 2. Schema of OIL and the previous approaches to learning in varying
feature spaces.

from low to high dimensions, from binary to multiclass, and
across various domains. All datasets are available from the
University of California, Irvine (UCI) ML Repository. The
detailed information of the selected datasets is presented in
Table I. OIL will be validated under two representative VFS

Fig. 3. Illustration of the two representative varying feature scenarios.

scenarios, Growing and Arbitrarily Varying, as shown in Fig.
3. Since the selected datasets have very few or no missing
values, we simulate data streams with varying feature spaces
by omitting some feature values from each instance. More
specifically, in Growing, the whole dataset will be separated
into 10 chunks, and the i-th chunk includes the first i×10% of
features. For example, if a dataset has 1000 instances and 50
features, the first chunk contains the first 100 instances and the
first 5 features. The 5th chunk contains the first 500 instances
and the first 25 features. In arbitrarily varying scenario, we
randomly omit a certain portion of features from each instance,
resulting in random numbers of unobserved, overlapping, and
new features. Unless stated otherwise, missing ratio r is set at
0.5. For a detailed performance trend analysis under different
r, we will set r from 10% to 70% with a step of 20% in
Section IV-C.

1760

TABLE I
DESCRIPTION OF 13 DATASETS FOR EXPERIMENTS.

Feature Instance Class
Name
magic04 10 19020 2
svmguide3 21 1234 2
german 24 1000 2
wdbc 31 569 2
ionosphere 35 351 2
spambase 57 4601 2
wine 13 178 3
cardiotocography 21 2126 3
frogs 22 7195 4
robot24 24 5456 4
drybean 16 13611 7
optdigits 64 5620 10
texture 40 5550 11

B. Imputation process

In this section, we detail the selected imputation methods for
our study and their adaptation to online learning. We selected
five representative imputation methods based on a literature
search, i.e., Mean, Mode, k-NN, MICE [11], MissForest [12].
The appropriate imputation method can vary greatly depending
on the given tasks, datasets, and missingness patterns. Thus,
we selected methods that are competitive under various con-
ditions and can be adapted for online learning with minor
modifications [13]–[15].

As a simple statistical imputation methods, mean and mode
are popular due to their extremely low computational cost.
Additionally, mean has the advantage that the online update
results are exactly the same as batch update results.

For mode, when a feature has limited cardinality such
as a categorical feature, mode can be updated by counting
the occurrence of each value in online learning. However,
for a continuous feature, since it might be difficult to know
the number of unique values or the range of the feature in
advance, so, we compute it through sliding window strategy
which is often used for online imputation methods [16]. Unless
otherwise specified, window size h is set to min(500, 0.2n),
where n is the total number of instances.

We selected k-NN as a representative machine learning
method. k-NN impute missing values based on the k nearest
neighbors from the learned instances. We set k to 5 and employ
sliding window strategy, as previously described, to compose
an instance pool for k-NN. Euclidean distance is employed
to calculate pairwise distances, and any features with missing
values are disregarded during the distance calculation.

Two iterative imputation methods are selected, MICE and
MissForest, the main difference between them is that MICE
perform multiple imputation and MissForest only perform
single imputation. In our initial experiments, we found that
these iterative methods are too slow for use in online learning,
even when reducing the number of samples to learn or relaxing
the convergence conditions. It might be because separate sub-
models are needed for the imputation of each feature, and this
process has to be repeated. Despite this drawback, the powerful

performance of these two methods has led us to adopt a fixed
window strategy, i.e., training the model only once using h
initial instances for its practical application in online learning.
Before store h instances for window, we employ k-NN for
imputation.

Lastly, although deep learning-based imputation methods
such as VAE or GAN are the subject of active research [15],
we did not employ deep learning-based imputation methods
in our study for several reasons. They typically require a large
number of instances for training, which isn’t practical in online
learning [14]. Additionally, while gradient descent algorithms
allow for updating deep learning models in online learning,
such models are prone to catastrophic forgetting, resulting
in unstable performance [17]. It’s worth noting that we can
effectively stabilize the imputation model using a shallow
network and supervised loss, similar to GLSC [5]. However,
exploring that approach is beyond the scope of our study.

C. Padding process

Unlike the typical imputation process in batch learning, the
imputation process in VFS may results only in trapezoidal
data streams. To further fill the data streams into a complete
feature space, we need to pad the remaining parts that cannot
be imputed due to the absence of previously observed feature
values. In this study, for convenience, we refer to this addi-
tional imputation process exclusively required in VFS as the
’padding process’ and evaluate three padding methods: Null,
Zero, and MinMax.

Null padding method means that we opt not to pad the
trapezoidal data streams. It’s important to note that if we
employ the Null method, the subsequent classifier must be
capable of learning from trapezoidal data streams. We will
pad all the remaining parts simply with zero in Zero method.
Lastly, assuming we know the range of each feature in
advance, we can employ MinMax method, which pads the
remaining parts with either the 10% or 90% quantile values
of each feature, selected randomly.

D. Classification process

Leveraging the flexibility of OIL, we’ve chosen adaptive
random forest (ARF) [18], a widely recognized classifier for
data streams, as our classifier in this paper. ARF is an ensemble
method that utilizes very fast decision tree (VFDT) [19], the
most popular Hoeffding tree algorithm, as its base model. It is
well known that VFDT can handle new features for learning
with minor modification [20]. Therefore, it also meets the
requirements for the Null method mentioned in Section III-C.

The number of base models is set to 50 and each tree adopt
local feature sampling to induce diversity. The maximum num-
ber of features for each node is set to min(sqrt(m),mt, 10),
where m represents the number of features in the complete
feature space and mt is the number of observed features
from the t-th instance. In other words, we limit the maximum
number of features to 10 to maintain a reasonable computation
speed even for high-dimensional data. Additionally, since we

1761

don’t consider the concept drift that frequently occurs in non-
stationary data, we don’t employ any drift or warning detec-
tors. The other hyper-parameters, such as instance resampling
weight and node split threshold, are set to the default values
of the package.

IV. RESULTS

Experimental results and discussion are presented in this
section. For online learning performance measurement, we
use the cumulative error rate (CER) [7] as a metric and it
is calculated based on the average of 5 trials with randomly
shuffled datasets. Both feature and instance sequences are
shuffled to reduce potential biases. Additionally, the evaluation
results based on ORF3V [7] are also included to provide a
baseline. ORF3V is a state-of-the-art online learner capable of
handling both Growing and Arbitrarily Varying scenarios.

A. Comparison of different padding methods

As described in Section III-C, the padding process is always
applied to trapezoidal data streams. Therefore, we directly
study the effects of each padding method in Growing scenario.
Since online imputation is not required in Growing, we can as-
sess the impact of different padding methods more accurately
than in Arbitrarily Varying. The results are shown in Table II.

TABLE II
CUMULATIVE ERROR RATE BASED ON EACH PADDING METHOD IN

GROWING SCENARIO. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

ORF3V OIL-Null OIL-Zero OIL-MinMax
Name
magic04 69.05 67.32 74.11 74.27
svmguide3 76.22 77.36 78.16 77.46
german 69.60 69.99 71.13 70.45
wdbc 86.68 86.83 89.75 87.43
ionosphere 73.51 83.54 83.49 78.63
spambase 69.32 83.46 86.10 84.47
wine 70.68 69.94 72.20 70.73
cardiotocography 77.78 80.26 82.62 80.47
frogs 75.74 87.56 87.48 87.23
robot24 65.25 81.61 75.99 70.50
drybean 52.53 81.73 81.74 83.11
optdigits 60.38 69.92 73.92 68.73
texture 46.75 83.66 79.38 78.51

We observe that the OIL method showed performance
comparable to ORF3V in all datasets. Among OIL method-
ologies, the performance based on the Zero padding method
is on average the highest (highest in 7 out of 13 datasets).
Additionally, OIL-Zero demonstrated higher performance than
ORF3V in all datasets. Of course, in datasets like ionosphere
and frogs, the performance of OIL-Null is the highest, but it
showed lower performance than ORF3V in datasets like wine
and magic04. It is because, in OIL-Null, unobserved features
don’t participate in training. This means that all trees tend to
be trained on similar feature subsets, reducing the diversity,
which is critical for ensemble methods. In contrast, filling
in any value with Zero or MinMax padding methods allows
each tree to have different feature subsets, making an effective
ensemble possible. Furthermore, it can delay learning until

there’s enough data for a split operation, allowing for more
cautious training.

Lastly, even though OIL-MinMax utilize additional infor-
mation through quantile values, there is no significant perfor-
mance improvement. This is because quantile values might
act as noise against real data. These results imply that relying
on conservative assumptions can produce overall better results
than utilizing incomplete additional information.

Considering the overall findings regarding the padding
methods, we will use the Zero padding method in subsequent
experiments.

B. Comparison of different imputation methods

Based on experimental settings described in Section III, we
evaluate OIL under Arbitrarily Varying scenario in this section.
It’s worth noting that each method doesn’t necessarily need
to reconstruct the original value accurately, as long as it can
improve CER. The results are shown in Table III.

From our experimental results, we observed that using just
OIL-Mean yields superior performance in 10 out of the 13
datasets when compared to ORF3V. Both OIL-k-NN and OIL-
MissForest surpass ORF3V in 12 out of the 13 datasets. This
suggests that even with basic imputation methods, one can
achieve performance comparable to ORF3V. It underscores the
idea that while novel algorithms might have diverse advan-
tages, leveraging existing research with the OIL approach can
already deliver commendable CER in VFS scenarios.

It is interesting that there isn’t a significantly superior OIL
method. Among 13 datasets, OIL-Mean and OIL-MICE each
showed the highest performance in one dataset, OIL-Mode in
two, OIL-k-nn in four, and OIL-MissForest in six datasets.
This demonstrates the importance of choosing imputation
methods suited to the dataset at hand.

Nonetheless, unlike OIL-Mode, which shows significant
performance variations depending on the dataset, OIL-Mean
provides stable performance across datasets and is comparable
to ORF3V. Therefore, it would be an excellent choice in
situations with extremely limited computational resources. If
there are some computational resources available and it’s pos-
sible to store hundreds of instances, then OIL-k-NN or OIL-
MissForest are good choices. Especially k-NN, with numerous
related online learning studies existing [21]–[23] and its high
flexibility as a type of lazy learning, can be utilized in various
situations. Lastly, while OIL-MissForest requires the relatively
high computational effort, it consistently delivers the highest
performance across datasets or, at the very least, provides
performance that’s comparable to the best. Thus, it can be
a viable option depending on the situation.

C. Ablation study on missing ratio

To further investigate the usefulness of various imputation
methods in VFS, we selected the Mean, k-NN, and MissForest
methods and evaluated them under different missing ratios:
0.1, 0.3, 0.5, and 0.7, in the Arbitrarily Varying scenario. The
results are presented in Table IV. While not presented in the
main text, we also conducted experiments for the case where

1762

TABLE III
CUMULATIVE ERROR RATE BASED ON EACH IMPUTATION METHOD IN ARBITRARILY VARYING SCENARIO. THE BEST RESULTS ARE HIGHLIGHTED IN

BOLD.

ORF3V OIL-Mean OIL-Mode OIL-k-NN OIL-MICE OIL-MissForest
Name
magic04 70.25 75.74 74.42 74.64 75.90 75.92
svmguide3 76.22 77.29 77.10 76.81 76.99 77.26
german 69.89 69.75 69.89 69.75 69.85 69.89
wdbc 89.53 90.46 90.28 91.94 92.43 91.94
ionosphere 73.17 77.94 74.51 80.51 80.74 80.80
spambase 68.42 83.01 86.15 82.28 84.88 84.66
wine 74.39 71.98 59.89 76.61 75.59 76.16
cardiotocography 78.00 79.12 79.11 79.49 82.75 82.87
frogs 75.06 84.70 78.06 91.30 90.53 90.67
robot24 66.03 62.11 58.93 68.54 68.27 69.01
drybean 54.80 84.61 76.35 78.85 87.45 87.53
optdigits 64.84 68.38 54.62 77.42 73.87 74.71
texture 51.59 70.25 62.55 76.40 75.38 75.42

r=0.9. However, the vast amount of missing data appears
to make meaningful learning challenging, regardless of the
imputation method applied, so we excluded it from this paper.

TABLE IV
CUMULATIVE ERROR RATE IN ARBITRARILY VARYING SCENARIO WITH

DIFFERENT MISSING RATIOS. THE PERCENTAGE RELATIVE TO THE
MAXIMUM PERFORMANCE IS INDICATED INSIDE THE PARENTHESES.

robot24 optdigits texture
Imputation r

OIL-Mean

0.1 83.48 (1.00) 83.52 (1.00) 80.14 (1.00)
0.3 74.17 (0.89) 77.52 (0.93) 75.83 (0.95)
0.5 64.23 (0.77) 66.40 (0.80) 69.81 (0.87)
0.7 56.06 (0.67) 48.16 (0.58) 56.23 (0.70)

OIL-k-NN

0.1 84.20 (1.00) 87.10 (1.00) 82.41 (1.00)
0.3 77.20 (0.92) 85.18 (0.98) 81.43 (0.99)
0.5 68.43 (0.81) 77.70 (0.89) 76.83 (0.93)
0.7 59.93 (0.71) 55.95 (0.64) 62.34 (0.76)

OIL-MissForest

0.1 84.20 (1.00) 86.55 (1.00) 80.89 (1.00)
0.3 76.72 (0.91) 83.15 (0.96) 79.61 (0.98)
0.5 68.85 (0.82) 74.69 (0.86) 74.85 (0.93)
0.7 58.74 (0.70) 57.22 (0.66) 66.36 (0.82)

Upon examining the results, we note that when the missing
ratio r = 0.1, the performance differences among imputation
methods are not significant. However, as r increases, these
differences become more pronounced. Specifically, Comparing
the scenario where r = 0.7 with that of r = 0.1, we observe
that MissForest maintains its performance most effectively,
showing an average performance drop of about 27%. In
comparison, k-NN experienced a drop of 30%, and Mean
dropped by 35%.

On the other hand, when r equals 0.3 or 0.5, the perfor-
mance drop of k-NN is slightly less pronounced, at 4% and
12%, respectively. This suggests that while k-NN is effective
when r is 0.3 or 0.5, MissForest, which leverages information
from all available instances, becomes more beneficial as the
number of missing values increases. It also explains why the
Mean method, being the simplest and a kind of column-wise
imputation technique, consistently demonstrates the poorest
ability to maintain performance across all tested values of r.
Consequently, as r increases, the robustness of the methods

can be ranked as MissForest, followed by k-NN, and then the
Mean method.

D. Ablation study on computational resource

In previous experiments, we have already demonstrated
that various imputation methods, especially k-NN and Miss-
Forest, can achieve excellent performance. However, these
two methods require the use of a sliding window strategy
for online learning. Additionally, in the ensemble classifier
part, the more base models we employ, the greater the com-
putational resources needed—this is not ideal in an online
learning setting. Therefore, in this section, we will explore
the performance variations when relaxing the conditions on
sliding window size and ensemble size. By comparing this
OIL performance with the ORF3V results obtained in Section
IV-B, we can determine the minimal conditions required to
achieve performance comparable to ORF3V.

TABLE V
CUMULATIVE ERROR RATE IN ARBITRARILY VARYING SCENARIO ACROSS

VARIOUS ENSEMBLE SIZES.

of tree 5 10 20 30 40 ORF3V
Name
robot24 60.90 64.64 67.60 67.22 67.71 66.03
optdigits 61.27 69.34 74.10 75.85 77.21 64.84
texture 74.09 75.37 75.73 76.53 76.10 51.59

When examining the impact of ensemble size on CER,
as presented in Table V, we find that for robot24 dataset,
employing a mere 20 base models is enough to achieve com-
parable performance to ORF3V. The corresponding CER of
ORF3V is provided on the far right of Table V for comparison.
Remarkably, optdigits and texture required only 10 and 5 base
models, respectively.

To study the impact of window size, we varied h from 0.02n
to 0.10n with a step of 0.02n for the k-NN imputation method,
where n denotes the total number of instances. The results are
shown in Table VI. Notably, For the robot24, optdigits, and
texture datasets, a window size of 0.06n, 0.02n, and 0.02n
respectively yields performance comparable to that of ORF3V.

1763

TABLE VI
CUMULATIVE ERROR RATE IN ARBITRARILY VARYING SCENARIO ACROSS

VARIOUS WINDOW SIZE h.

h 0.02n 0.04n 0.06n 0.08n 0.10n ORF3V
Name
robot24 61.62 64.09 66.05 67.95 68.56 66.03
optdigits 72.62 75.31 76.61 77.11 77.33 64.84
texture 71.95 74.32 75.53 75.75 76.50 51.59

V. CONCLUSION

In this study, we introduce a novel approach named OIL
for learning in varying feature spaces. Through comprehensive
experiments on 13 benchmark datasets, we demonstrated OIL’s
superiority over the SOTA method. Specifically, OIL, utilizing
basic Mean imputation and Zero padding without any addi-
tional assumptions, outperforms ORF3V in 10 out of the 13
datasets. Moreover, OIL, when implemented with MissForest
imputation and Zero padding (which demands an assumption
for slight data storage and computational resources), surpasses
ORF3V’s performance in 12 out of 13 datasets. This suggests
that OIL could be a viable solution for addressing classification
in VFS.

Considering the practicality of online learning, we believe
the window-based k-NN (which also outperforms ORF3V in
12 out of the 13 datasets) is the most attractive option. As
future work, we intend to enhance the k-NN by introducing
prototype or clustering-based augmentation to make it even
more suitable for online learning. From the classifier’s per-
spective, while we have currently tuned the ARF minimally,
we plan to further refine it based on the requirements of VFS.
Additionally, we aim to improve OIL’s overall performance
by considering advanced ensemble base models, like moving
from VFDT to subsequent versions such as EFDT.

ACKNOWLEDGMENT

This work was supported by Electronics and Telecommuni-
cations Research Institute(ETRI) grant funded by the Korean
government (23ZS1100, Core Technology Research for Self-
Improving Integrated Artificial Intelligence System).

REFERENCES

[1] S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A compre-
hensive survey,” Neurocomputing, vol. 459, pp. 249–289, 2021.

[2] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure,
privacy-preserving and federated machine learning in medical imaging,”
Nature Machine Intelligence, vol. 2, no. 6, pp. 305–311, 2020.

[3] S. Gu, Y. Qian, and C. Hou, “Learning with incremental instances and
features,” IEEE Transactions on Neural Networks and Learning Systems,
2023.

[4] E. Beyazit, J. Alagurajah, and X. Wu, “Online learning from data streams
with varying feature spaces,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, 2019, pp. 3232–3239.

[5] Y. He, B. Wu, D. Wu, E. Beyazit, S. Chen, and X. Wu, “Toward mining
capricious data streams: A generative approach,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 3, pp. 1228–1240,
2020.

[6] C. Schreckenberger, C. Bartelt, and H. Stuckenschmidt, “Dynamic forest
for learning from data streams with varying feature spaces,” in Inter-
national Conference on Cooperative Information Systems. Springer,
2022, pp. 95–111.

[7] C. Schreckenberger, Y. He, S. Lüdtke, C. Bartelt, and H. Stuckenschmidt,
“Online random feature forests for learning in varying feature spaces,”
vol. 37, no. 4, pp. 4587–4595.

[8] H. S. Yi He, Schreckenberger and X. Wu, “Towards Utilitarian Online
Learning – A Review of Online Algorithms in Open Feature Space,”
in Proc. of the 32nd International Joint Conference on Artificial Intel-
ligence (IJCAI), 2023.

[9] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty,
R. Vaysse et al., “River: machine learning for streaming data in python,”
vol. 22, no. 110, pp. 1–8.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel et al., “Scikit-learn: Machine learning in python.”

[11] S. V. Buuren and K. Groothuis-Oudshoorn, “mice : Multivariate impu-
tation by chained equations in R,” vol. 45, no. 3.

[12] D. J. Stekhoven and P. Bühlmann, “MissForest—non-parametric missing
value imputation for mixed-type data,” vol. 28, no. 1, pp. 112–118.

[13] S. Jäger, A. Allhorn, and F. Bießmann, “A benchmark for data imputa-
tion methods,” vol. 4, p. 693674.

[14] Y. Sun, J. Li, Y. Xu, T. Zhang, and X. Wang, “Deep learning versus
conventional methods for missing data imputation: A review and com-
parative study,” vol. 227, p. 120201.

[15] A. Nazábal, P. M. Olmos, Z. Ghahramani, and I. Valera, “Handling
incomplete heterogeneous data using VAEs,” vol. 107, p. 107501.

[16] W. Dong, S. Gao, X. Yang, and H. Yu, “An exploration of online missing
value imputation in non-stationary data stream,” vol. 2, no. 2, p. 57.

[17] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” vol. 113, pp. 54–71.

[18] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger et al., “Adaptive random forests for evolving data stream
classification,” vol. 106, no. 9, pp. 1469–1495.

[19] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, pp. 71–80.

[20] C. Schreckenberger, T. Glockner, H. Stuckenschmidt, and C. Bartelt,
“Restructuring of hoeffding trees for trapezoidal data streams,” in 2020
International Conference on Data Mining Workshops (ICDMW). IEEE,
pp. 416–423.

[21] S. Eghbali, H. Ashtiani, and L. Tahvildari, “Online nearest neighbor
search in binary space,” in 2017 IEEE International Conference on Data
Mining (ICDM). IEEE, 2017, pp. 853–858.

[22] ——, “Online nearest neighbor search using hamming weight trees,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 42, no. 7, pp. 1729–1740, 2019.

[23] P. Raja and K. Thangavel, “Missing value imputation using unsupervised
machine learning techniques,” Soft Computing, vol. 24, no. 6, pp. 4361–
4392, 2020.

1764

