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Abstract—Modern intelligent applications utilizing data-driven
analysis have gained significant attention. As these applications
rely on analyzing large-scale data for improved performance,
they demand substantial high-performance memory. However,
current computer architectures often lack the capacity to provide
enough fast memory, leading to performance degradation in such
applications. To address these limitations, memory expansion
devices are being developed that connect to host servers through
the new cache coherent interconnects like CXL. These devices
offer additional memory and hardware acceleration capabilities
to enhance performance.

In this paper, we propose a novel method to accelerate
data-intensive MPI applications in a CPU-FPGA heterogeneous
computing environment, employing memory expansion devices
called MEX. Our approach leverages MEX and MPI to enable
near-memory processing by utilizing MEX as shared computing
resources. To the best of our knowledge, this is the first study
to combine memory expansion devices and MPI for accelerating
data-intensive MPI applications. We implement a content-based
image similarity search system using MPI and MEX and verify
the feasibility of our proposed methods.

Index Terms—Message Passing Interface, Memory Expansion
Device, Data-Intensive Application

I. INTRODUCTION

With the proliferation of the artificial intelligence and big
data, a data-driven approach is utilized in numerous domains
such as weather forecasting, protein structure analysis, au-
tonomous driving, and XR (eXtended Reality). The latest
intelligent applications using the data-driven approach utilize
massive data for their own purpose. For instance, deep learning
applications leverage large amounts of data to improve the
accuracy and reduce the overfitting.

Since data-intensive applications handle a huge amount of
data, the capacity of memory on a computing node directly
affects application performance. Unfortunately, however, there
is a clear limit on the memory capacity due to the architectural
limitations of the hardware. To overcome these limitations,
leading memory vendors such as Samsung reveal their own
FPGA (Field Programmable Gate Array) based memory ex-
pansion devices [1] [2]. These memory expansion devices em-
ploy cache-coherent interconnect such as CXL [3], CCIX [4],
Gen-Z [5] instead of the PCle to achieve higher bandwidth and
lower latency. In addition, they provide hardware acceleration
that leverages near-memory processing (NMP) through FPGAs
to increase the computing capability of computing nodes [6].

1776

Another representative memory expansion device is MEX
(Memory EXpander) [7] connected to a computing node via
CXL. MEX is an expansion card that provides additional
memory named MEMEM (MEx MEMory) and accelerator for
hardware acceleration named MEACC (MEx ACCelerator).
In this paper, we propose a novel method to improve the
performance of k-NN (K-Nearest Neighbor) which is the
key operation of the typical data-intensive application, on a
CPU-FPGA heterogeneous computing environment adopting
a prototype version MEX.

We also employ MPI (Message Passing Interface) to im-
prove the performance of large-scale similarity search appli-
cations. MPI is a type of inter-process communication method
and a standard specification for message passing between
processes in distributed memory architecture [8], [9]. It in-
creases the parallel processing performance and the scalability
of processors in a multi-node cluster. We use MVAPICH
[10] which is the optimized implementation for InfiniBand to
parallelized k-NN in a multi-node cluster.

We implement the k-NN accelerator which uses our propri-
etary MPI-MEX library. MPI-MEX library is newly devised to
reduce the network communication overhead by replacing the
send and receive operations with the read and write operations
of MEMEM. It also increases the processing speed of MPI
operations by parallel processing the distance computation and
sort using the MEACC. The proposed method could be a so-
lution to improve the system scalability of HPC environment.

The major contributions of our work are as follows:

o We survey various data-intensive applications and select
k-NN operation as the target use case for MEX.

o We newly devise and implement MPI-MEX, a library that
improves MPI communication performance with Near
Memory Processing using MEX. It uses MEMEM and
MEACC usefully for the communication and operations
of MPIL.

+ We implement the k-NN accelerator which can be used in
various data-intensive applications using the MPI-MEX
library.

+ We implement the content-based image similarity search
system using the MPI-MEX library and k-NN accelerator
and verify the the feasibility of the proposed method.

The rest of this paper is organized as follows. In Section II,
we present the background of our work. In Section III, we in-
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troduce related work. Section IV describes the proposed MPI-
MEX library and the k-NN accelerator. The implementation
details of the content-based image similarity search system
are presented in Section V. Finally, Section VI concludes this

paper.
II. BACKGROUND
A. Memory Expansion Device

As more and more cores are integrated into a single pro-
cessor chip to fulfill the demand for more powerful comput-
ing capability, the required memory bandwidth and capacity
are also increasing. However, as the hardware limitations of
each computing node impose certain limits on the memory
bandwidth and capacity, there is a demand for a new memory
interface that breaks the existing memory hierarchy.

To meet this demand, the next-generation interconnects such
as CXL and CCIX have emerged that allow access to the
expanded memory located between storage and main memory
while maintaining the cache coherence. These interconnects
provide the ability for host CPUs to maintain cache coherence
between heterogeneous accelerators as well as memory, and
are in the spotlight as a technology that efficiently utilizes
computing resources provided by heterogeneous accelerators.
As interconnects continue to advance, there is an emergence
of memory expansion devices that make use of these improved
interconnects. Representative examples of memory expansion
devices include CXL Memory Expander [2] and MEX [7].
They not only merely provide expanded memory but also
provide the hardware acceleration by leveraging the concept
of near-memory processing.

B. K-Nearest Neighbor

k-NN is a key operation of the similarity search [11]. It
is widely used in deep learning, machine learning [12], and
data mining [13]. Image recognition [14], anomaly detection,
text classification, bioinformatics are representative examples
of applications that utilize k-NN operation [15]. To find the
similar items, it first measures the similarity between the target
item and the candidate items based on a distance metric.
After computing all the distances, it sorts the distances and
selects Top-k items. In this way, k-NN makes a large workload
during the similarity search process. Since the k-NN is quite
compute- and data-intensive operation, the performance of
similarity search is highly dependent on the k-NN processing
performance.

III. RELATED WORK

In this section, we review the state-of-the-art technologies
to improve the performance of data-intensive applications and
the researches on the near-memory processing. Chen et al.
[16] proposed pattern matching accelerators for the genome
analysis platform to improve the performance. They made the
sequence searching operations be hardware-friendly by map-
ping the original sequences into the high-dimensional space.
Peng et al. [17] proposed the similarity search accelerator to
improve the performance of molecular databases. They devised

FPGA-based graph traversal engine and increased the search
speed and accuracy. Kalantar er al. [18] presented a FPGA-
accelerator performing time series similarity prediction using
deep learning models. They improve the performance of real-
time analysis system by implementing both the edge and cloud
accelerators.

Singh et al. [19] tried to tackle the data movement bot-
tleneck between the processor and memory using FPGA
with high-bandwidth memory. By leveraging the FPGA, they
accelerated the genome analysis and the weather modeling.
Herruzo et al. [20] proposed the memory-centric architecture
that reduces the unpredictable memory access which cannot
benefit from the cache hierarchies in processors. Asgari et al.
[21] proposed the solution for reducing the irregular random
memory accesses in scientific computing and graph analytics.
The proposed approach minimized data movement by maxi-
mizing the parallelism of the memory accesses while eliminat-
ing redundant memory accesses for the large embedding table
lookup. Ke et al. [22] proposed the NMP platform to improve
the performance of recommendation systems. They improved
the performance of embedding operations using the specialized
FPGA board. Lee et al. [6] improved the performance of the
scan operation of database management systems using the
NMP solution for data analysis.

IV. PROPOSED METHOD

In this section, we introduce the MPI-MEX library, which
enables the sharing of memory and accelerators of the MEX
device among MPI ranks. Furthermore, we present the k-NN
accelerator developed using the proprietary MPI-MEX library.

A. MPI-MEX Library

MPI-MEX is the library that provides MPI communication
method using MEX memory which is named MEMEM as a
communication buffer.It also offloads several MPI operations
(MPI-OPs) to the MEX accelerator named MEACC.

1) Point-to-Point Communication: Fig. 1 shows the com-
parison of point-to-point (P2P) communication of the conven-
tional MPI and MPI-MEX. As shown Fig. 1 (a), the sender Py
puts its data 5 in an envelope and sends it to the receiver P;
through the network communication methods. Fig. 1 (b) shows
the P2P communication method of MPI-MEX. Currently, the
Send and Recv of MPI-MEX provides the functionality of P2P
MPI communication by write and read MEMEM. This feature
has been implemented by managing the address of MEMEM
as a shared memory resource. (D The sender P, sends the data
by writing data into the MPI-Data-Envelope of the MEMEM
that is used for storing data and envelope information of MPI
ranks. @ The sender P receives the pointer *ptr of the above
mentioned MEMEM and saves it into the shared memory. B
The receiver P; attaches itself to shared memory and finally
reads the data after checking the information in the envelope.

2) Collective Communication: MPI-Reduce is an operation
in which the root rank Py receives the computation result by
performing MPI-OPs on the data of the MPI ranks in the same
communicator. This function is designed as shown in Fig. 2.
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Fig. 1: P2P Communication of MPI-MEX

MPI-Reduce of MPI-MEX is similar to MPI-Reduce of
the conventional MPI, but the biggest difference is that the
MPI-OP kernel’s binary file name is placed in the parameter
position where the MPI-OP is placed. In this figure, we show
that each of the four MPI ranks has one number, and the
sum of these numbers is computed using the MPI-OP kernel
developed in MEACC not in the CPU. First of all, Py prepares
two shared memory. One is for storing the pointer *ptr of MPI-
Data-Envelope, and the other is for the monitoring variable
Prog that is used for checking the write progress of MPI
ranks. MPI-Reduce of MPI-MEX goes through seven stages.
@ Py writes data 5 stored in its send buffer to MEMEM using
the shared memory pointer *ptr in the yellow box. Then it
assigns 3 which is the number excluding itself in the total
number of ranks to shared variable Prog in the pink box.
After that, it monitors Prog variable until it becomes 0 to
see if there are any remaining write operations. @ P; writes
data 2 stored in its send buffer to MEMEM. Then it subtracts
1 from Prog variable to indicate that its write operation is
completed. (B P, writes data 7 stored in its send buffer to
MEMEM. Then it subtracts 1 from Prog variable to indicate
that its write operation is completed. @ P3 writes data 4 stored
in its send buffer to MEMEM. Then it subtracts 1 from Prog
variable to indicate that its write operation is completed. &
When the Prog variable becomes 0, Py confirms that all MPI
ranks have finished their write operations and calls the MPI-OP
kernel of MEACC. ® Then the MPI-OP kernel computes the
sum of data of Py to P3 stored in the MEMEM in a parallel
manner and derives 18 as the sum of 5, 2, 7, 4 and stores
the result in MEMEM area which is marked in red color. @
Finally, Py reads and copies the computation result to the host
memory.

Fig. 3 shows the sequence diagram of MPI-Reduce in
the heterogeneous computing environment. We represent the
sequence diagram assuming an environment using Xilinx
Runtime (XRT) and PCle shell. When the main program
calls MPI-Reduce, P, requests and receives a shared memory
and a semaphore from the OS and attached to the shared
memory. After that, Py requests the XRT to allocate an array
in MEMEM. The request is delivered to the shell of MEX,
and the shell allocates an array in MEMEM and informs the
XRT of the physical address of the array. Then XRT converts

MPI-COMM-WORLD
@

(Shell) MEX Accelerator
| WPiop |
[ow ] =
Gt
MEX

® MPI-OP kernel computes
the SUM for the data in the MEMEM.

Host cPU  ® Call MPI-OP Kernel

Fig. 2: Collective Communication of MPI-MEX

the physical address of MEMEM into the logical address and
informs the pointer *ptr of the array to Py. In addition, *ptr
is stored in a shared memory to share the address of the array
in MEMEM with other ranks Py, Py, and P3. Py initializes
the Prog variable and uses it to monitor whether other ranks
have written all data to MEMEM. The initialization value
is set to a number excluding itself from the size of MPI-
COMM-WORLD. In this figure, since four MPI ranks are in
one MPI-COMM-WORLD, the corresponding variable value
is initialized to 3. After this initialization step, MPI-Barrier
is called once to make other ranks start processing after the
initialization of Py. After the MPI-Barrier, Py writes its own
data to the O™ index of the array in MEMEM. After that, the
progress of the write operation of other ranks is monitored
using Prog variable.

Py, P> and P53, which are not root ranks, wait until the
initialization step of Py is finished. After recognizing that
initialization is completed, they attach themselves to the shared
memory created by Py, and gets a semaphore to manage the
critical section of the shared memory from Operating Systems.
After that, P; writes data stored in its send buffer to the 1%,
P, writes its data to 2", and P5 writes its data to 3™ of the
array in MEMEM. At this time, when the write operation for
each rank is completed, they subtract 1 from the Prog variable
respectively. Py continues to monitor the Prog variable, and
when the value becomes 0, it confirms that all ranks have
finished the write operations. Then Py calls the MPI-OP kernel
to compute the data of Py to P3 stored in MEMEM and finally
reads the computation result from MEMEM.

Algorithm 1 describes the MPI-Reduce using MEX. The
input parameters of the algorithm is as follows. s is the
send buffer, r is the receive buffer, op is the type of MPI
operation, oot is the id of the root process. Line 2 is the
stage of initializing the result variable r and write progress
check variable Prog. Lines 3—11 is the process of root rank.
The root rank creates shared memory in MEMEM, allocates
xptr and initializes the Prog variable to the MPI-COMM-
WORLD size minus 1. Then, it call MPI-Barrier and writes
its data from the send buffer to xptr. Afterward, it waits for the
other MPI ranks to complete their write operations and invokes
MEACC’s MPI-OP kernel when all ranks have finished their
write operations. Lines 12-19 is the process of non-root rank.
Non-root ranks attach to the shared memory and write data to

1778



Host [_] MEX

main] (0 PLMEX SHELL] [ MEMEM | | MEACC
MPI-Reduce i i MPI-OP
(1 Request and attach shared memory and request semaphore :
Request to allocate an array in MEMEM and ask for a pointer .
Requestiphysical addr. of MEMEM
Request to convert physical addr. of MEMEM to logical *”ﬂ )
addr. and gets the pointer *ptr of the array in MEMEM «——(JGet physical addr. of MEMEM
Initialize Prog variable which is the shared variables for checking th write progress of
other ranks and save *ptr to the shared memory
|
Call MPI-Barrier so that all ranks are synchronized
> i
Write data of send buffer to the 0™ index of the array in MEMEM {0
Monitor Prog variable until it becomes 0 o i
P1 = T -
MP 'LMEX Wait for PO to initialize using while loop
Attach shared memory and request semaphore &
Write data of send buffer to the 15tindex of the arrzl:]m MEMEM .I']
Subtract 1 from Prog variable to indicate that the write operation i g =

P2
QMF 1-MEX I Wait for PO to initialize using while loop

Attach shared memory and request semaphore hf

Write data of send buffer to the 2" index of the aer in MEMEM
Subtract 1 from Prog variable to indicate that the write operation isfcom| sleted

.E MPI-MEX Rzt for po to initialize using while Ioop 2
Attach shared memory and request semaphore LU

Write data of send buffer to the 3¢ index of the aer in MEMEM _r]
Subtract 1 from Prog variable to indicate that the v!fjie operation islcom

QMPI—MEX

Get the results| | | When Prog variable becomes 0, call MPI-OP kernel i

of MPI-Reduce F
1 Read the

e
(|

3 stored in MEV\@A
i

J
Store MPI-OP results

MEACC to corppute data of PO to

ion results of MPI-OP kernel in MEACC from the[MEMEM

Fig. 3: Sequence Diagram of MPI-Reduce

the location offset by itself from xptr and subtract 1 from the
Prog variable. The final result of MPI-Reduce is returned in
Line 20.

Algorithm 1 MPI-Reduce using MEX

1: procedure MPI-REDUCE(s, r, op, root)

2 r < () Prog < —999

3 if myRank is root then

4: x«ptr <—create Shared-MEMEM

5: Prog < sizeof(MPI-COMM-WORLD)-1

6: call MPI-Barrier

7 write s to xptr of Shared-MEMEM

8 while Prog # 0 do

9 ; // wait for all write operations

end while
11: r < call MPI-OP kernel in MEACC
12: else
13: while Prog is -999 do
14: ; // wait for initialization of root
15: end while
16: attach Shared-MEMEM
17: write s to *ptr + sizeof(s) * myRank
18: Prog--
19: end if
20: return r

21: end procedure

B. k-NN Accelerator using MPI-MEX

The typical data process of a similarity search application
is as follows [23]. In the first step, Feature Extraction, the
feature vectors are extracted from candidate items. The second
step is Query Generation, this step extracts feature vectors

from the query item. The third step is the k-NN search. In this
step, the k-NN operator computes the distance among feature
vectors of dataset and the query item using the distance metric.
The fourth step is the Reverse Lookup step. This step finds
actual items and shows the final Top-k item to the user.

The proposed k-NN accelerator of this paper finds Top-k
items using MPI and MEX as follows. The MPI ranks receive
a set of feature vector C and a query vector g as inputs
and compute k-NN in a distributed and parallel manner using
MEMEM and MEACC. The data processing flow consists of
four main parts. In part I, which is the Scatter and Broadcast
stage, it scatters candidate vectors and their indexes, and
broadcasts the query vector to all the MPI ranks in the same
MPI communicator. In part II which is the Compute Distance
stage, each MPI rank computes and sorts the distance of
candidate feature vectors and query vector using the distance
computation and sort kernel of MEACC. In part III, each
MPI rank sorts the distance in descending order. At this time,
the important thing is to sort the index together in the order
in which the distances are sorted. We named this stage as
Local Sort because MPI ranks only sort the data in their own
memory.

Part IV, the Global Sort stage, is the step to derive the
global sort results by collecting and sorting the distances of
different MPI ranks. In this stage, the MPI ranks communicate
using the shared MEMEM as their communication buffer, and
sort the distances using MEACC. For example, Py and P,
write the local sorted distance to the shared MEMEM created
by Py and Py reads the distance stored in Shared-MEMEMp.
Then Py performs the sorting by merging distances using the
sort kernel of MEACC. P, and P3 write the local sorted
distance to the shared MEMEM created by P in order to
merge and sort their data, and P, reads the distance stored in
Shared-MEMEMj3. Then P» performs the sorting by merging
distances using the sort kernel of MEACC. Then Py and P»
write the local sorted distance to the shared MEMEM created
by Py in order to merge and sort their data, and Py reads the
distance stored in Shared-MEMEMy;,. Finally, Py performs
the sorting by merging distances of the two MPI ranks and
the global sort is completed.

V. IMPLEMENTATION

To demonstrate the effectiveness of our method in real data-
intensive applications, we developed a content-based image
similarity search system. As a hardware configuration, we use
one x86 host server with AMD Xilinx Alveo U280 FPGA
card which is the MEX prototype connected by PCle bus.
MPI ranks use the MEX memory as a communication buffer
to communicate with each other by reading and writing that
memory and they use MEX accelerator for the several MPI-
OPs, distance computation, and sort. As a software configu-
ration, we use MPI-MEX which is the custom MPI library
for MEX and OpenCL for the communication between the
host CPU and MEX. For the demonstration, we use 128
RGB images in 10 categories as the dataset. We made the
dataset by collecting images with the large color difference
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since we used the color histogram as a feature vector in the
demonstration. We implement the C++ based OpenCL kernel
for the acceleration logic of the MEX accelerator. Given a
query image, our system finds the Top-k similar images and
displays the answer images on the monitor screen.

VI. CONCLUSION

In this paper, we propose a novel method to improve
the performance of data-intensive application using MPI and
MEX. To achieve our objectives, we first devise and develop
the MPI-MEX library that leverages the memory of MEX
as a communication buffer and the accelerators of MEX for
accelerating various MPI operations, distance computation,
and sort. The library greatly helps reduce MPI communication
and computation costs.

Furthermore, we implemented the k-NN accelerator on a
CPU-FPGA heterogeneous computing environment using the
MPI-MEX library. Then, we implemented a content-based
image similarity search system using the k-NN accelerator to
demonstrate the feasibility of our approach and verified its
effectiveness. The proposed method is expected to serve as a
cornerstone for near-memory processing solutions in MPIL.
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