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Abstract— This paper presents an XPU device driver (XDD) 
that efficiently supports the OpenCL programming model and 
development tools for the AB21 SoC, a heterogeneous 
computational accelerator used in the homegrown prototype of 
the Supreme-K supercomputer. We propose a dynamic polling-
based termination detection mechanism for parallel computing 
kernel tasks to improve the scheduling performance of OpenCL 
work groups in a split driver model architecture for 
heterogeneous compute accelerators connected to the host 
system via PCIe. Furthermore, we enhance the architecture of 
XDD to support debugging through the hardware DM of the 
RISC-V ISA core. This enhancement facilitates the efficient 
development and optimization of various parallel computing 
applications. 
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I. INTRODUCTION 
Computational accelerators, such as GPUs, TPUs, or 

FPGAs, have been widely utilized in recent HPC systems. 
Besides, research on the development of heterogeneous SoC 
hardware, constructed with both a general-purpose processor 
core and heterogeneous computation accelerators, is in active 
progress. GPUs and other accelerators are broadly employed 
in high-performance computing fields, including artificial 
intelligence, big data, and supercomputers [1,2,3,5]. 
Companies such as Nvidia, AMD, and Google broadly 
employ conventional computation accelerators primarily in 
the HPC industry. 

Customized optimization is limited in the heterogeneous 
accelerator and processor-based high-performance computing 
system environment of a new architecture that integrates 
processor cores and accelerator cores from various hardware 
and system vendors due to the separation of hardware design 
and software stack implementation. In contrast, during the 
hardware design and development stage of system processors 
and nodes, efficient parallel computing applications can be 
developed by carrying out a co-design process that closely 
involves software stacks, including high-level programming 
models, compilers, runtimes, and device drivers. It is possible 
to develop an optimized software stack for performance and 
supporting customized programming models. Computational 
accelerator devices like Nvidia GPU, Google TPU, and AMD 
HAS/Rock offer not only dedicated software stacks optimized 
for their own accelerators for parallel application execution 
but also a range of development support tools, such as 
debuggers and profilers. Efficient utilization of new 
computational accelerator devices and development of device-
optimized parallel applications require the provision of 

development support tools, such as profilers and debuggers, 
for application and system program developers. 

In Supreme-K project, which is to develop supercomputer 
prototype based on home-grown massively parallel 
processing unit. Fig. 1 shows the HW architecture and SW 
stacks of Supreme-K system. The core technology of the 
Supreme-K supercomputer, which is a self-developed SoC 
that integrates a commercial ISA core (ARM armv 8.4) and a 
parallel accelerator in a single chip as a cache coherent mesh 
network, and aims to achieve FP64 computational theoretical 
performance of 16 TFLOPS. OpenCL was adopted as a 
programming model to take advantage of SoC's parallel 
computing capability and named SOCL (Supreme-K 
OpenCL). The development of parallel accelerator ISA-based 
SOCL compiler, runtime, and device driver is in progress [2]. 

There are three key techniques we have in place to 
efficiently support the execution and development of parallel 
program applications on the AB21 SoC device.: 

· We propose a scheduling algorithm using the split driver model 
for workgroup scheduling. The algorithm is based on scheduling 
metadata stored in shared memory on a SoC device, which allows 
for the simultaneous execution of parallel computational kernel 
tasks.  

· We propose a workgroup scheduling method and termination 
detection mechanism for kernel execution based on dynamic 
periodic polling. Our approach utilizes a device-side dedicated 
core that supports efficient scheduling of parallel computing 
kernel tasks. 

· We offer the device driver architecture and function extensions 
required for debugger and profiler tools to support parallel 
computing applications on AB21 SoC devices for performance 
optimization. 

In this paper, we describes the architecture and core design 
of the XPU device driver (XDD) that enables optimized 
execution of the parallel computation kernel on the AB21 SoC 
device. The AB21 SoC device is a heterogeneous core-based 
computational accelerator located in the computation node of 
the Supreme-K supercomputer system. It also elaborates on 
the modification of the architecture to support debugger, 
profiler, and management tools. These tools provide a 
platform for developing and verifying the upper layer's 
software stacks. Finally, it concludes by explaining the future 
direction of development and plans for the AB21 SoC device 
driver. This device driver enables efficient simultaneous 
execution of multi-user processes. 
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Fig. 1. Supreme-K System Architecture diagram  

II. OVERVIEW OF XDD DEVELOPMENT ON AB21 SOC 

A. Supreme-K System architecture 
The development HW platform used in this paper is the 

AB21 SoC, which is a self-developed, heterogeneous 
accelerator SoC. It integrates a commercial ISA core and XPU 
(eXtreme Processing Unit) - the core technologies of the 
Supreme-K supercomputer prototype - into a single chip 
connected using a cache coherent mesh network (CMN) [2]. 
Each XPU has a cluster connected to a single SMMU 
configured for every eight parallel computation units (XEMIS) 
to facilitate fast address conversion. Additionally, a single 
AB21 has an ARM SMMUv3's complex device architecture 
with SMMUs embedded in four clusters. Each XEMIS 
executes a workgroup of the OpenCL parallel computation 
kernel allocated by the scheduler, and parallel computation is 
processed exclusively as a HW thread through the 
Computation Accelerator Unit Module (XECM) that supports 
RISC-V ISA. 

B. XPU Device Driver Development Overview 
For concurrent design, development, and operational 

verification of the AB21 compiler, SOCL runtime, and other 
components, we used XDE (XPU Driver Emulator) and 
AB21Q for software and hardware emulation. We created an 
emulation platform called XPUSim and XDE (XPU Driver 
Emulator) for fast prototyping, which facilitated the 
concurrent development of the compiler, OpenCL backend, 
and SW stack based on Runtime for XPU devices[4]. 
Furthermore, we developed the prototype HW and SW 
components before the SoC development, which consisted of 
porting, integration testing, XDD, upper SW stack 
applications, and system software, through a collaborative 
design approach across the hardware and software 
development teams on an FPGA-based AB21 HW platform 
system. However, during this fast prototype development, the 
parallel application program's performance degraded due to 
the scheduling overhead caused by the allocation of work-
groups for XEMIS of the XPU unit and the interrupt-based 
kernel task termination notification. 

As shown in Figure 2, when a running kernel terminates, 
the status register in each XEMIS unit of the XPU changes 
from XEMIS_BUSY to XEMIS_IDLE and a hardware 
interrupt is generated. The interrupt handler requests 
scheduling from the workgroup scheduler provided by the 

XDD. The entire scheduler's response time for scheduling is 
when an interrupt occurs to indicate the termination of kernel 
execution, and the workgroup scheduler assigns a new 
workgroup to the corresponding register and requests it to be 
executed. XEMIS, as a parallel computation unit allocated for 
executing parallel computation kernel tasks within the XPU, 
has representative methods for notifying the termination of 
OpenCL work group execution through interrupt and polling 
mechanisms. The interrupt-based mechanism for notifying the 
result of task execution requires a relatively high processing 
cost for the interrupt service handler, due to context switching. 
This mechanism is dedicated to scheduling work-groups in the 
HW scheduler, for example, Nvidia GPU and terminates 
kernel execution for all work-groups. It is common to process 
post-work completion notification only as an interrupt. The 
status register-based polling mechanism for WG execution 
uses a dedicated core and can quickly ascertain the end of 
execution of each WG while supporting fast scheduling. 
During the processing of large-scale computations that take a 
long time to execute in a work-group, a problem of system 
load increase due to incessant polling may arise. 

 
Fig. 2. Flow diagram of Interrupt-based notification of kernel task 
termination and Work-group scheduling on XPU  

III. XPU DEVICE DRIVER DESIGN 
To develop better device drivers that support the OpenCL 

model and development tools such as the debugger on the 
AB21 SoC, we are using heterogeneous computing 
acceleration on our own prototype supercomputer. Our 
proposal to enhance the OpenCL work group scheduling 
performance in a split driver model architecture for 
heterogeneous computational accelerator devices connected 
to the host through PCIe is a dynamic periodic polling-based 
parallel computing kernel task termination detection 
mechanism. 

A. XDD Architecture and key features 
As shown in Figure 3, the XPU Device Driver (XDD) is a 

platform device driver for executing OpenCL parallel 
computing applications and providing device initialization 
and management for the AB21 hardware device, which is a 
heterogeneous acceleration (XPU) SoC connected to the host 
system. XDD offers the XPU Driver Library (XDL) to support 
the XPU backend of the AB21 device within the SOCL 
development that was developed based on PoCL to ensure 
OpenCL 2.0 compatibility. The XPU device driver that was 
suggested has a model architecture of a split driver, which 
divides and processes tasks related to parallel computing 
kernel workgroup scheduling in a host OS and device OS at 
the same time. The XPU Platform Driver (XPD) that runs on 
the host system and the Inner-XPU Driver (IXD) that runs on 
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the AB21 device share and process scheduling metadata 
generation and workgroup scheduling via shared queues and 
scheduling metadata in device memory. The IXD driver 
comprises XEMIS Scheduler and Job Execution Checker 
components for workgroup scheduling. Using parallel 
computing tasks and scheduling metadata from XPD, the 
XEMIS Scheduler assigns work groups to available XEMIS 
on the XPU. The Job Execution Checker checks for parallel 
thread group termination on XEMIS by monitoring the 
execution status register through a dynamic period polling 
mechanism. 

 
Fig. 3. Architecture and component diagram of the XDD software stack.  

B. Memory configuration and access control of 
the SoC device 
The AB21 device's physical memory is roughly divided 

into three regions: the device operating region, the shared 
metadata region, and the device allocation memory region. 
The first region is a memory space dedicated to the device. It 
contains the embedded operating system for device operation 
and management, drivers, and system software. The second 
memory area is a shared space between the host system and 
the device. It stores shared queues such as the Job queue and 
Command queue, as well as scheduling metadata like the 
Execution State of parallel application jobs used for XDD 
scheduling. This is a memory space commonly used by driver 
modules for scheduling and notifying commands, job requests, 
processing results, and errors of both the host and the device 
for XDD and IXD. When the XDD driver boots, it creates a 
shared queue that IXD initializes. This is done by sharing 
information that was set at boot time using AB21 registers. 
The memory data space of the device memory constitutes the 
third area, which is allocated and managed by the memory 
management mechanism of the IXD. The global memory 
space of the parallel operation kernel performs the memory 
copy of input/output data for the parallel computing 
application of the host system using DMA. The XMMU, 
integrated in the XPU, is responsible for the quick translation 
of addresses and access control of the memory allocated to the 
HW thread device. On the other hand, the XEMIS of the XPU 
manages the device memory. 

 
Fig. 4. Comparison of the cost of work-group scheduling on XPU: 
notification method of kernel task termination using polling versus interrupt. 

C. Work group scheduling with adaptive polling 
To support the concurrent execution of multi-user 

processes on a heterogeneous computational accelerator SoC 
with an integrated general-purpose core and computational 
accelerator core, a workgroup scheduling scheme is proposed. 
In an environment where no dedicated hardware scheduler 
exists within the computational accelerator SoC, OpenCL 
parallel computation kernel tasks are allocated efficiently to 
the parallel computation unit (XEMIS) and executed. IXD 
provides an execution termination detection mechanism 
through polling, based on the kernel execution status register 
of each XEMIS, using a dedicated general-purpose core. As 
shown in Figure 4, the method enables fast scheduling by 
rapidly detecting the execution termination of workgroups 
running in each XEMIS, compared to methods that use 
interrupts or fixed period polling. Moreover, by periodically 
calculating the average execution termination detection times 
and updating the polling cycle, the load on the SoC general-
purpose core due to frequent polling is reduced. It offers a way 
to selectively apply execution result notification and 
scheduling methods through the AB21 device's scheduling 
control register. 

IV. AB21 SOC DEVELOPMENT TOOLS SUPPORT 
We provide development tools, like management tools, 

debuggers, and profilers, to effectively debug, verify, and 
optimize different upper software stacks, including AB21 SoC 
device-based parallel applications, benchmarking tools, and 
system software. Extra APIs are available to support 
debugging and profiling functions in the XDD and XDL 
layers. The debugger and profiler requests are handled through 
the extension of shared queue commands and events. In 
addition to libraries that support SoCL Runtime, XDL also 
supports extra APIs, libraries, and driver functions for 
debugging, profiling, configuration, operation setup, and 
monitoring support. 

A. XMT ( XPU Management Tool) 
XMT provides monitoring and configuration support for 

XPU operation similar to Nvidia's nvidia-smi tool for GPU 
accelerators. It focuses on XDD and its related configuration 
and status information. XDD provides essential information to 
XMT by using driver initialization information and XPU 
management knowledge from lower level components such as 
XPD and OS. Upon request, it transmits the allocated resource 
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information of the parallel computing kernel used by the 
active user processor in real-time. 

 
Fig. 5. An example of the conceptual operation diagram for XDD-based 
debugging functionality is the processing of memory information read 
requests from a running XECM thread. 

B. AB21 Debugger support 
The XDD and driver library, which serve as a lower 

backend of the LLDB debugger, have been expanded to 
support debugging of the AB21 SoC device. To achieve this, 
a debugging environment is established by utilizing the DM 
(Debug Module) of the calculation core (XECM) inside the 
AB21 SoC, a hardware accelerator that supports RISC-v ISA. 
IXD provides thread-level stepwise debugging for the parallel 
computation kernel present in the calculation core through 
DMI for DM (Debug Module) of XECM for debugging 
control and management processing requested through XPD's 
command queue. In addition to debugger support, XDL also 
offers 23 debug APIs covering 6 categories like kernel 
execution, memory access, read/write register, thread info, 
and breakpoint. As illustrated in Fig. 5, the command queue 
of XDD/IXD handles the request for processing the debugger 
function, which is then transferred to the DM of each XECM 
for processing. Upon execution of the command request and 
in case of occurrence of a SW or HW fault during debugging, 
the memory copy of the buffer area is performed through 
registers or DMA by making use of the event queue. 

C. AB21 Profiler support 
To support the AB21 accelerator device profiling tool, the 

XDL library and XDD can collect information on 16 key 
metrics registers, such as instruction and cache miss. XDL 
provides nine APIs, such as profiling start/stop and read 

profile data, while XDD reads the values of control registers 
and PMON registers inside the operation accelerator core 
(XEC). It then collects all metric data through DMA. The cost 
of collecting profiling data is minimized by sending profiling 
data in bulk to the user buffer area allocated to the host system. 

V. CONCLUSIONS AND FUTURE WORKS 
This paper presents the design and development of a split 

driver model device driver architecture with the aim of 
reducing parallel kernel scheduling overhead of XDD for the 
AB21 SoC, a heterogeneous accelerator SoC for the Supreme-
K supercomputer prototype. We propose a dynamic polling-
based termination detection mechanism with dynamic periods 
to enhance OpenCL workgroup scheduling performance for 
heterogeneous computational accelerator devices. 
Furthermore, we also modify device driver architecture and 
functions to create a DM-based accelerator kernel debugger 
and profiler, which is a computation core (XECM) inside a 
hardware accelerator supporting RISC-v ISA. This feature 
supports thread-level stepwise debugging for parallel 
computation kernel tasks performed in the accelerator. This 
feature handles debugger and profiler requests and reads 
registers using the shared, queue-based command queue and 
event queue of the XDD driver. 

In the future, we plan to integrate and verify the AB21 SoC 
software stacks using OpenCL CTS in a multi-user, 
concurrent execution environment. We will perform various 
performance verifications and tests for the high-performance 
computing (HPC) sparse matrix application, using the in-
house developed QAND application. 
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