
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A device driver for the AB21 SoC in Supreme-K
system

Youngho Kim, Eunji Lim, Shinyoung Ahn, Yoomi Park
Supercomputing Technology Research Center

Electronics and Telecommunications Research Institute
Daejeon, South Korea

{kyh05,ejlim,syahn,parkym}@etri.re.kr

Abstract— This paper presents an XPU device driver (XDD)
that efficiently supports the OpenCL programming model and
development tools for the AB21 SoC, a heterogeneous
computational accelerator used in the homegrown prototype of
the Supreme-K supercomputer. We propose a dynamic polling-
based termination detection mechanism for parallel computing
kernel tasks to improve the scheduling performance of OpenCL
work groups in a split driver model architecture for
heterogeneous compute accelerators connected to the host
system via PCIe. Furthermore, we enhance the architecture of
XDD to support debugging through the hardware DM of the
RISC-V ISA core. This enhancement facilitates the efficient
development and optimization of various parallel computing
applications.

Keywords—AB21 SoC, XPU, Heterogeneous Accelerator,
OpenCL, Device driver

I. INTRODUCTION
Computational accelerators, such as GPUs, TPUs, or

FPGAs, have been widely utilized in recent HPC systems.
Besides, research on the development of heterogeneous SoC
hardware, constructed with both a general-purpose processor
core and heterogeneous computation accelerators, is in active
progress. GPUs and other accelerators are broadly employed
in high-performance computing fields, including artificial
intelligence, big data, and supercomputers [1,2,3,5].
Companies such as Nvidia, AMD, and Google broadly
employ conventional computation accelerators primarily in
the HPC industry.

Customized optimization is limited in the heterogeneous
accelerator and processor-based high-performance computing
system environment of a new architecture that integrates
processor cores and accelerator cores from various hardware
and system vendors due to the separation of hardware design
and software stack implementation. In contrast, during the
hardware design and development stage of system processors
and nodes, efficient parallel computing applications can be
developed by carrying out a co-design process that closely
involves software stacks, including high-level programming
models, compilers, runtimes, and device drivers. It is possible
to develop an optimized software stack for performance and
supporting customized programming models. Computational
accelerator devices like Nvidia GPU, Google TPU, and AMD
HAS/Rock offer not only dedicated software stacks optimized
for their own accelerators for parallel application execution
but also a range of development support tools, such as
debuggers and profilers. Efficient utilization of new
computational accelerator devices and development of device-
optimized parallel applications require the provision of

development support tools, such as profilers and debuggers,
for application and system program developers.

In Supreme-K project, which is to develop supercomputer
prototype based on home-grown massively parallel
processing unit. Fig. 1 shows the HW architecture and SW
stacks of Supreme-K system. The core technology of the
Supreme-K supercomputer, which is a self-developed SoC
that integrates a commercial ISA core (ARM armv 8.4) and a
parallel accelerator in a single chip as a cache coherent mesh
network, and aims to achieve FP64 computational theoretical
performance of 16 TFLOPS. OpenCL was adopted as a
programming model to take advantage of SoC's parallel
computing capability and named SOCL (Supreme-K
OpenCL). The development of parallel accelerator ISA-based
SOCL compiler, runtime, and device driver is in progress [2].

There are three key techniques we have in place to
efficiently support the execution and development of parallel
program applications on the AB21 SoC device.:

· We propose a scheduling algorithm using the split driver model
for workgroup scheduling. The algorithm is based on scheduling
metadata stored in shared memory on a SoC device, which allows
for the simultaneous execution of parallel computational kernel
tasks.

· We propose a workgroup scheduling method and termination
detection mechanism for kernel execution based on dynamic
periodic polling. Our approach utilizes a device-side dedicated
core that supports efficient scheduling of parallel computing
kernel tasks.

· We offer the device driver architecture and function extensions
required for debugger and profiler tools to support parallel
computing applications on AB21 SoC devices for performance
optimization.

In this paper, we describes the architecture and core design
of the XPU device driver (XDD) that enables optimized
execution of the parallel computation kernel on the AB21 SoC
device. The AB21 SoC device is a heterogeneous core-based
computational accelerator located in the computation node of
the Supreme-K supercomputer system. It also elaborates on
the modification of the architecture to support debugger,
profiler, and management tools. These tools provide a
platform for developing and verifying the upper layer's
software stacks. Finally, it concludes by explaining the future
direction of development and plans for the AB21 SoC device
driver. This device driver enables efficient simultaneous
execution of multi-user processes.

1781979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

Fig. 1. Supreme-K System Architecture diagram

II. OVERVIEW OF XDD DEVELOPMENT ON AB21 SOC

A. Supreme-K System architecture
The development HW platform used in this paper is the

AB21 SoC, which is a self-developed, heterogeneous
accelerator SoC. It integrates a commercial ISA core and XPU
(eXtreme Processing Unit) - the core technologies of the
Supreme-K supercomputer prototype - into a single chip
connected using a cache coherent mesh network (CMN) [2].
Each XPU has a cluster connected to a single SMMU
configured for every eight parallel computation units (XEMIS)
to facilitate fast address conversion. Additionally, a single
AB21 has an ARM SMMUv3's complex device architecture
with SMMUs embedded in four clusters. Each XEMIS
executes a workgroup of the OpenCL parallel computation
kernel allocated by the scheduler, and parallel computation is
processed exclusively as a HW thread through the
Computation Accelerator Unit Module (XECM) that supports
RISC-V ISA.

B. XPU Device Driver Development Overview
For concurrent design, development, and operational

verification of the AB21 compiler, SOCL runtime, and other
components, we used XDE (XPU Driver Emulator) and
AB21Q for software and hardware emulation. We created an
emulation platform called XPUSim and XDE (XPU Driver
Emulator) for fast prototyping, which facilitated the
concurrent development of the compiler, OpenCL backend,
and SW stack based on Runtime for XPU devices[4].
Furthermore, we developed the prototype HW and SW
components before the SoC development, which consisted of
porting, integration testing, XDD, upper SW stack
applications, and system software, through a collaborative
design approach across the hardware and software
development teams on an FPGA-based AB21 HW platform
system. However, during this fast prototype development, the
parallel application program's performance degraded due to
the scheduling overhead caused by the allocation of work-
groups for XEMIS of the XPU unit and the interrupt-based
kernel task termination notification.

As shown in Figure 2, when a running kernel terminates,
the status register in each XEMIS unit of the XPU changes
from XEMIS_BUSY to XEMIS_IDLE and a hardware
interrupt is generated. The interrupt handler requests
scheduling from the workgroup scheduler provided by the

XDD. The entire scheduler's response time for scheduling is
when an interrupt occurs to indicate the termination of kernel
execution, and the workgroup scheduler assigns a new
workgroup to the corresponding register and requests it to be
executed. XEMIS, as a parallel computation unit allocated for
executing parallel computation kernel tasks within the XPU,
has representative methods for notifying the termination of
OpenCL work group execution through interrupt and polling
mechanisms. The interrupt-based mechanism for notifying the
result of task execution requires a relatively high processing
cost for the interrupt service handler, due to context switching.
This mechanism is dedicated to scheduling work-groups in the
HW scheduler, for example, Nvidia GPU and terminates
kernel execution for all work-groups. It is common to process
post-work completion notification only as an interrupt. The
status register-based polling mechanism for WG execution
uses a dedicated core and can quickly ascertain the end of
execution of each WG while supporting fast scheduling.
During the processing of large-scale computations that take a
long time to execute in a work-group, a problem of system
load increase due to incessant polling may arise.

Fig. 2. Flow diagram of Interrupt-based notification of kernel task
termination and Work-group scheduling on XPU

III. XPU DEVICE DRIVER DESIGN
To develop better device drivers that support the OpenCL

model and development tools such as the debugger on the
AB21 SoC, we are using heterogeneous computing
acceleration on our own prototype supercomputer. Our
proposal to enhance the OpenCL work group scheduling
performance in a split driver model architecture for
heterogeneous computational accelerator devices connected
to the host through PCIe is a dynamic periodic polling-based
parallel computing kernel task termination detection
mechanism.

A. XDD Architecture and key features
As shown in Figure 3, the XPU Device Driver (XDD) is a

platform device driver for executing OpenCL parallel
computing applications and providing device initialization
and management for the AB21 hardware device, which is a
heterogeneous acceleration (XPU) SoC connected to the host
system. XDD offers the XPU Driver Library (XDL) to support
the XPU backend of the AB21 device within the SOCL
development that was developed based on PoCL to ensure
OpenCL 2.0 compatibility. The XPU device driver that was
suggested has a model architecture of a split driver, which
divides and processes tasks related to parallel computing
kernel workgroup scheduling in a host OS and device OS at
the same time. The XPU Platform Driver (XPD) that runs on
the host system and the Inner-XPU Driver (IXD) that runs on

1782

the AB21 device share and process scheduling metadata
generation and workgroup scheduling via shared queues and
scheduling metadata in device memory. The IXD driver
comprises XEMIS Scheduler and Job Execution Checker
components for workgroup scheduling. Using parallel
computing tasks and scheduling metadata from XPD, the
XEMIS Scheduler assigns work groups to available XEMIS
on the XPU. The Job Execution Checker checks for parallel
thread group termination on XEMIS by monitoring the
execution status register through a dynamic period polling
mechanism.

Fig. 3. Architecture and component diagram of the XDD software stack.

B. Memory configuration and access control of
the SoC device
The AB21 device's physical memory is roughly divided

into three regions: the device operating region, the shared
metadata region, and the device allocation memory region.
The first region is a memory space dedicated to the device. It
contains the embedded operating system for device operation
and management, drivers, and system software. The second
memory area is a shared space between the host system and
the device. It stores shared queues such as the Job queue and
Command queue, as well as scheduling metadata like the
Execution State of parallel application jobs used for XDD
scheduling. This is a memory space commonly used by driver
modules for scheduling and notifying commands, job requests,
processing results, and errors of both the host and the device
for XDD and IXD. When the XDD driver boots, it creates a
shared queue that IXD initializes. This is done by sharing
information that was set at boot time using AB21 registers.
The memory data space of the device memory constitutes the
third area, which is allocated and managed by the memory
management mechanism of the IXD. The global memory
space of the parallel operation kernel performs the memory
copy of input/output data for the parallel computing
application of the host system using DMA. The XMMU,
integrated in the XPU, is responsible for the quick translation
of addresses and access control of the memory allocated to the
HW thread device. On the other hand, the XEMIS of the XPU
manages the device memory.

Fig. 4. Comparison of the cost of work-group scheduling on XPU:
notification method of kernel task termination using polling versus interrupt.

C. Work group scheduling with adaptive polling
To support the concurrent execution of multi-user

processes on a heterogeneous computational accelerator SoC
with an integrated general-purpose core and computational
accelerator core, a workgroup scheduling scheme is proposed.
In an environment where no dedicated hardware scheduler
exists within the computational accelerator SoC, OpenCL
parallel computation kernel tasks are allocated efficiently to
the parallel computation unit (XEMIS) and executed. IXD
provides an execution termination detection mechanism
through polling, based on the kernel execution status register
of each XEMIS, using a dedicated general-purpose core. As
shown in Figure 4, the method enables fast scheduling by
rapidly detecting the execution termination of workgroups
running in each XEMIS, compared to methods that use
interrupts or fixed period polling. Moreover, by periodically
calculating the average execution termination detection times
and updating the polling cycle, the load on the SoC general-
purpose core due to frequent polling is reduced. It offers a way
to selectively apply execution result notification and
scheduling methods through the AB21 device's scheduling
control register.

IV. AB21 SOC DEVELOPMENT TOOLS SUPPORT
We provide development tools, like management tools,

debuggers, and profilers, to effectively debug, verify, and
optimize different upper software stacks, including AB21 SoC
device-based parallel applications, benchmarking tools, and
system software. Extra APIs are available to support
debugging and profiling functions in the XDD and XDL
layers. The debugger and profiler requests are handled through
the extension of shared queue commands and events. In
addition to libraries that support SoCL Runtime, XDL also
supports extra APIs, libraries, and driver functions for
debugging, profiling, configuration, operation setup, and
monitoring support.

A. XMT (XPU Management Tool)
XMT provides monitoring and configuration support for

XPU operation similar to Nvidia's nvidia-smi tool for GPU
accelerators. It focuses on XDD and its related configuration
and status information. XDD provides essential information to
XMT by using driver initialization information and XPU
management knowledge from lower level components such as
XPD and OS. Upon request, it transmits the allocated resource

1783

information of the parallel computing kernel used by the
active user processor in real-time.

Fig. 5. An example of the conceptual operation diagram for XDD-based
debugging functionality is the processing of memory information read
requests from a running XECM thread.

B. AB21 Debugger support
The XDD and driver library, which serve as a lower

backend of the LLDB debugger, have been expanded to
support debugging of the AB21 SoC device. To achieve this,
a debugging environment is established by utilizing the DM
(Debug Module) of the calculation core (XECM) inside the
AB21 SoC, a hardware accelerator that supports RISC-v ISA.
IXD provides thread-level stepwise debugging for the parallel
computation kernel present in the calculation core through
DMI for DM (Debug Module) of XECM for debugging
control and management processing requested through XPD's
command queue. In addition to debugger support, XDL also
offers 23 debug APIs covering 6 categories like kernel
execution, memory access, read/write register, thread info,
and breakpoint. As illustrated in Fig. 5, the command queue
of XDD/IXD handles the request for processing the debugger
function, which is then transferred to the DM of each XECM
for processing. Upon execution of the command request and
in case of occurrence of a SW or HW fault during debugging,
the memory copy of the buffer area is performed through
registers or DMA by making use of the event queue.

C. AB21 Profiler support
To support the AB21 accelerator device profiling tool, the

XDL library and XDD can collect information on 16 key
metrics registers, such as instruction and cache miss. XDL
provides nine APIs, such as profiling start/stop and read

profile data, while XDD reads the values of control registers
and PMON registers inside the operation accelerator core
(XEC). It then collects all metric data through DMA. The cost
of collecting profiling data is minimized by sending profiling
data in bulk to the user buffer area allocated to the host system.

V. CONCLUSIONS AND FUTURE WORKS
This paper presents the design and development of a split

driver model device driver architecture with the aim of
reducing parallel kernel scheduling overhead of XDD for the
AB21 SoC, a heterogeneous accelerator SoC for the Supreme-
K supercomputer prototype. We propose a dynamic polling-
based termination detection mechanism with dynamic periods
to enhance OpenCL workgroup scheduling performance for
heterogeneous computational accelerator devices.
Furthermore, we also modify device driver architecture and
functions to create a DM-based accelerator kernel debugger
and profiler, which is a computation core (XECM) inside a
hardware accelerator supporting RISC-v ISA. This feature
supports thread-level stepwise debugging for parallel
computation kernel tasks performed in the accelerator. This
feature handles debugger and profiler requests and reads
registers using the shared, queue-based command queue and
event queue of the XDD driver.

In the future, we plan to integrate and verify the AB21 SoC
software stacks using OpenCL CTS in a multi-user,
concurrent execution environment. We will perform various
performance verifications and tests for the high-performance
computing (HPC) sparse matrix application, using the in-
house developed QAND application.

ACKNOWLEDGMENT
This research was supported by the Super Computer

Development Leading Program of the National Research
Foundation of Korea(NRF) funded by the Korean government
(Ministry of Science and ICT(MSIT)) (No.
2021M3H6A1017683)

References
[1] 2022. TOP500 Lists. http://www.top500.org/lists/top500.
[2] Park, Y. M., et al. “The Innovation Engine for the Future: Supreme-K

Supercomputer system”, in Proc. of the 2022 Summer Conference of
The Institute of Electronics and Information Engineers (IEIE), 2022.

[3] Lyuh, C. G., et al. “XPU-based Ultra-High Performance Processor SoC
Technology for Super Computer”, in Proc. of the 2022 Summer
Conference of The Institute of Electronics and Information Engineers
(IEIE), 2022.

[4] Lim, E. J., et al. “Design of Device Driver for Accelerator of Massively
Parallel Processor for Supercomputer supporting OpenCL”, in Proc. of
the 2022 Summer Conference of The Institute of Electronics and
Information Engineers (IEIE), 2022.

[5] S. Mittal a nd J . S . Vetter, "A survey of CPU-GPU heterogeneous
computing techniques", ACM Comput. Surv., vol. 47, no. 4, pp. 1-35,
Jul. 2015

1784

