
Multi-robot Benchmark
for Collaborative Manipulation Tasks

Seonghyun Kim
Digital Convergence Research

Laboratory
Electronics and Telecommunications

Research Institute
Daejeon, Korea

kim-sh@etri.re.kr

Ingook Jang
Digital Convergence Research

Laboratory
Electronics and Telecommunications

Research Institute
Daejeon, Korea

ingook@etri.re.kr

Samyeul Noh
Digital Convergence Research

Laboratory
Electronics and Telecommunications

Research Institute
Daejeon, Korea

samuel@etri.re.kr

Donghun Lee
Digital Convergence Research

Laboratory
Electronics and Telecommunications

Research Institute
Daejeon, Korea

donghun@etri.re.kr

Heechul Bae
Digital Convergence Research

Laboratory
Electronics and Telecommunications

Research Institute
Daejeon, Korea

hessed@etri.re.kr

Abstract— Recently, research on multi-agent environments
has been continuously conducted based on the development of
research on single-agent environments. This paper deals with
the study of collaborative task design and learning for multiple
robots to cooperate in an environment where multiple robots
operate. Unlike a single robot environment, the multi-robot
environment has a non-stationary characteristic due to the
relationship between robot actions affecting each other. Such
non-stationary problems are highly complex and related to
collaboration tasks because they affect the performance
degradation of learning and the convergence time of learning
models. In this paper, we present three types of collaborative
task problems: Pick-Push-Place, Collaborative Lift, and
Handover. We also discuss the implementation of each task and
the validation of learning outcomes.

Keywords—multi-agent reinforcement learning, multi-robot
benchmark, collaborative manipulation task.

I. INTRODUCTION
Recently, reinforcement learning has been studied in

various environments such as 2D games and 3D object pose
control and has made significant progress. Technological
advances in reinforcement learning are also expanding as an
attempt to introduce reinforcement learning in robot
environments. Robot environments correspond to problems
with high difficulty in control problems [1]-[7]. While many
attempts and algorithms have been proposed to solve
manipulation tasks such as Reach, Push, Place in single robot
environments, algorithm development that operates stably for
collaborative tasks in multi-robot environments has not been
developed relatively compared to single robot tasks.

Unlike single-robot environments, multi-robot
environments have a non-stationary nature in which the
stochastic changes in a multi-robot environment vary from
hour to hour because the actions of the robots affect each other
[8]. For example, from the perspective of a particular robot,
the probability of the transition of the environment state due
to the action of that robot changes along the rows of other
robots because the action of other robots affects the outcome
of that robot's action. This means that more empirical data is

required than in a single-robot environment due to the wider
range of changes in the environment state space, which can
lead to problems such as delayed convergence time of the
learning model and poor learning performance. The
complexity of these problems is closely related to the design
of the working environment. In this paper, we present three
types of collaborative task problems: Pick-Push-Place,
Collaborative Lift, and Handover. We also discuss the
implementation of each task and the validation of learning
outcomes.

II. COLLABORATIVE MANIPULATION TASKS
In this section, we present three kinds of work related to

collaborative manipulation tasks. The robot used in all tasks
consists of an arm with 6-Degrees of freedom (DoF) and a
gripper with 1-DoF. The detailed configuration and reward
functions for each task are described as follows.

A. Pick-Push-Place

Fig. 1. An environment for the Pick-Push-Place task.

Figure 1 shows the environment for the Pick-Push-Place
task, which consists of two robots and two target objects (a red
cube and a maroon tray). In the Pick-Push-Place task, the
success condition is defined as "the cube is placed inside the
tray". To satisfy the success condition in this environment, the
robot on the left grasps the cube, the robot on the right grasps
the tray, and the two robots collaboratively place the objects
by moving their respective grasps to the center of the table.

This work was supported by Electronics and Telecommunications

Research Institute (ETRI) grant funded by the Korean government.
[23ZR1100, A Study of Hyper-Connected Thinking Internet Technology by
autonomous connecting, controlling, and evolving ways].

1789979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

The reward functions for learning in the Pick-Push-Place
task are defined as follows:
l Grasping reward:

,
 = , for robot  grasping object 

0, for otherwise

l Distance reward for robots:

 ,
 = − −  

l Distance reward for objects:

 , = − − 

l Place reward:

 = , for the state when cube is in tray
0, for otherwise

where i is the index of the robot,  is the robot i's gripper
position,  is the object position, and  and  are positive
constants. Using these reward functions, a total reward for
Pick-Push-Place task at time t is defined as


 = ∑ ,

 + ,
  + , +  . (1)

B. Collaborative Lift

Fig. 2. An environment for a Collaborative Lift task.

Figure 2 shows an environment for a Collaborative Lift task
consisting of two robots, a target object (red cube), a goal
position (red sphere), and a tray with a handle (gray tray). To
succeed in this environment, the two robots must grasp each a
handle of the tray, then lift the tray while keeping it horizontal
to move the target object to the goal position.

The reward functions for learning in the Collaborative Lift
task are defined as follows:
l Grasping reward:

,
 = , for robot  grasping handle ℎ

0, for otherwise

l Distance reward for robots:

 ,
 = − −  

l Distance reward for object:

 ,
 = − − 

l Lift reward:

 = , for the state when cube reaches goal
0, for otherwise

where  is the handle position,  is the goal position, and
 is a positive constant. Using these reward functions, a total
reward for Collaborative Lift task at time t is defined as

 = ∑ ,
 + ,

  + ,
 +  . (2)

C. Handover

Fig. 3. An environment for the Handover task.

Figure 3 shows the environment for the Handover task,
which consists of two robots, a target object (red stick), a goal
position (red sphere), and a dummy object (gray cube). In the
handover task, the success condition is defined as "the target
object reaches the goal position". To satisfy the success
condition in this environment, the robot on the left must grasp
the target object, pass it to the robot on the right, and then the
robot on the right must move the target object to the goal
position.

The reward functions for learning in the Handover task are
defined as follows:
l Grasping reward:

 = , for gripper grasping target object
0, for otherwise

l Distance reward for robots:

 , = − − 

l Distance reward for object:

 ,
 = − − 

l Handover reward:

 = , for grasping reward pair (0, )
0, for otherwise

where  is a positive constant. Using these reward functions,
a total reward for Handover task at time t is defined as

 = ∑  + ,  + ,
 +  . (3)

D. Dec-POMDP
To deal with non-stationary problems in multi-agent

environments, it is essential to extend Markov decision
processes (MDPs) to distributed partially observable Markov
decision processes (Dec-POMDPs). In a Dec-POMDP, the
distributed partial observation setting means that the
probability of a state transition consists of multiple actions and
observations, under the assumption that each agent knows
only its own actions and not the actions of other agents.

1790

(a)

(b)

Fig. 4. Task verifications for the Pick-Push-Place task, (a) total rewards
according to episodes, (b) a screenshot at the task termination.

E. Multi-Agent Deep Deterministic Policy Gradient
In this work, we adopt Multi-Agent Deep Deterministic

Policy Gradient (MA-DDPG) as the baseline for the validation
of three kinds of benchmark tasks. MA-DDPG uses a
centralized method in the training phase and a distributed
method in the execution phase to solve non-stationary
problems in multi-agent environments [10]. MA-DDPG is
based on the Actor-Critic method, where the policies of
multiple agents corresponding to actors are executed and
updated in a distributed manner, and the value functions
corresponding to critics are updated in a centralized manner.
The value function is updated through a centralized method
given all the action information of the agents, so the non-
stationary problem does not affect it. Since each agent's policy
is learned through this centralized value function and does not
take into account the actions of other agents, multiple agents
act in a distributed manner.

III. SIMULATION RESULT

A. Environment Implemenation
The collaborative task environments are implemented

based on the Robot Learning Benchmark and Learning
Environment (RLBench) [11]. RLBench provides an interface
to easily create different task models. RLBench was
developed based on Copeliasim and Pyreb. Coppeliasim was
developed to facilitate the design and verification of robotic
algorithms, robot simulation and training, and virtual world-
based safety checks. PyRep is a toolkit for robot learning that
utilizes CoppeliaSim and was developed to run CoppeliaSim
in Python.

(a)

(b)

Fig. 5. Task verifications for the Collaborative task, (a) total rewards
according to episodes, (b) a screenshot at the task termination.

RLBench provides graphical user interface-based design
tools and functionality for users who want to design new robot
manipulation tasks. Designing a task requires two details: an
environment model and a description. The environment model
contains all three-dimensional scene information, such as the
positions and properties of objects. The description includes
the success condition for the task, and the definition of
rewards function for the robot actions.

B. Network Implemenation and Learning Setting
The implementation of MA-DDPG is identical to the

structure and hyperparameters in [10]. Each policy and value
function is parameterized by a two-layer ReLU MLP with 64
units per layer. During the learning process, the maximum
length per episode is set to 50 and the maximum number of
episodes to 50000.

C. Task Verification
Figure 4 shows task verifications for the Pick-Push-Place

task, where Figures 4(a) and (b) represent total rewards
according to episodes and a screenshot at the task termination,
respectively. As shown in Figure 4(a), performance increases
steeply with increasing the distance reward until about 10000
episodes, and then goes through a phase of learning the
grasping reward until about 50000 episodes. At about 65000
episodes, the maximum performance is achieved with the
place reward, after which the performance drops due to further
exploration and then increases again. As shown in Figure4(b),
the Pick-Push-Place task is completed by collaboration
between the two robots.

1791

(a)

(b)

Fig. 6. Task verifications for the Handover task, (a) total rewards according
to episodes, (b) a screenshot at the task termination.

Figure 5 shows the task validation for Collaborative Lift
task. As shown in Figure 5(a), the performance increases
rapidly as the grasping reward increases until about 10000
episodes, then it goes through a phase where it tries to learn
the lift reward until about 35000 episodes. After about 35000
trials, it can be seen that the lift reward gradually increases as
the two robots collaborate to balance the tray. At around
70000 iterations, the maximum performance is reached and
convergence is shown. As shown in Fig. 5(b), the
Collaborative Lift Task is completed by the collaboration of
the two robots to balance the tray.

Figure 6 shows the task validation for the handover task.
As observed in Figure 6(a), the performance initially increases
but reaches a limit. More specifically, the first robot is able to
grasp the target object, but the second robot is not able to grasp
the target object, i.e., no handover is performed. One of the
reasons why the handover task is difficult to solve with

learning is the credit assignment problem. Since handovers are
performed by acting in different directions on the same object,
it is difficult to determine how much each robot's action
contributed to the reward in terms of a single summed reward,
i.e., the credit assignment problem. Another reason is that we
need to look at it from the perspective of the first robot.
Handover means that the first robot gives up the grasping
reward on its own. As distributed actors, the robots learn their
actions based on optimization in a greedy manner, so during
the learning process, the first robot does not give up the
grasping reward and the handover is not completed.

IV. CONLUSION
In this paper, we define three types of collaborative tasks,

including Pick-Push-Place, Collaborative Lift, and Handover,
and verify them using the base algorithm MA-DDPG. The
simulation results show that the simple application of MA-
DDPG is limited in solving collaborative tasks that are highly
affected by the credit assignment problem, such as handover.
In future work, we would like to conduct research to solve
credit assignment problems in collaborative tasks.

REFERENCES
[1] Y.-J. Han I.-S. Kim and Y.-D. Hong, “Optimization-based humanoid

robot navigation using monocular camera within indoor environment,”
ETRI Journal, vol. 40, no. 4, pp. 446-457, Aug., 2018.

[2] M. Zhang, J. Chen, X. Wei, and D. Zhang, “Work chain-based inverse
kinematics of robot to imitate human motion with Kinect,” ETRI
Journal, vol. 40, no. 4, pp. 511-521, Aug., 2018.

[3] M. Ilbeygi et al, “Comprehensive architecture for intelligent adaptive
interface in the field of single-human multiple-robot interaction,” ETRI
Journal, vol. 40, no. 4, pp. 483–498, Aug., 2018.
Canovas, Bruce, Amaury Negre, and Mich ` ele Rombaut. “Onboard
dynamic RGB-D simultaneous localization and mapping for mobile
robot navigation.” ETRI Journal 43.4 (2021): 617-629.

[4] S. Jung, et al. “Collision-free local planner for unknown subterranean
navigation,” ETRI Journal pp. 580-593, 43(4), 2021.

[5] S. Hong. et al. “Special issue on recent advancements in simultaneous
localization and mapping (SLAM) and its applications.” ETRI Journal
pp. 577-579, 43(4), 2021.

[6] S. Seo, and H. Jung. “A robust collision prediction and detection
method based on neural network for autonomous delivery robots.”
ETRI Journal pp. 329-337, 45(2), 2023.

[7] W. Yu, and S. Song, “Design and experimentation of remote driving
system for robotic speed sprayer operating in orchard environment,”
ETRI Journal pp. 479-491, 45(3), 202),.

[8] H. Kim et al, “Avoiding collaborative paradox in multi-agent
reinforcement learning,” ETRI Journal pp. 1004-1012, 43(6), 2021.

[9] R. Lowe et al, “Multiagent actor-critic for mixed cooperative-
competitive environments,” in Proc. NIPS, pp. 2094–2100, 2017.

[10] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The robot
learning benchmark learning environment,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, Apr., 2020.

1792

