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Abstract— Recently, research on multi-agent environments 
has been continuously conducted based on the development of 
research on single-agent environments. This paper deals with 
the study of collaborative task design and learning for multiple 
robots to cooperate in an environment where multiple robots 
operate. Unlike a single robot environment, the multi-robot 
environment has a non-stationary characteristic due to the 
relationship between robot actions affecting each other. Such 
non-stationary problems are highly complex and related to 
collaboration tasks because they affect the performance 
degradation of learning and the convergence time of learning 
models. In this paper, we present three types of collaborative 
task problems: Pick-Push-Place, Collaborative Lift, and 
Handover. We also discuss the implementation of each task and 
the validation of learning outcomes. 

Keywords—multi-agent reinforcement learning, multi-robot 
benchmark, collaborative manipulation task. 

I. INTRODUCTION  
Recently, reinforcement learning has been studied in 

various environments such as 2D games and 3D object pose 
control and has made significant progress. Technological 
advances in reinforcement learning are also expanding as an 
attempt to introduce reinforcement learning in robot 
environments. Robot environments correspond to problems 
with high difficulty in control problems [1]-[7]. While many 
attempts and algorithms have been proposed to solve 
manipulation tasks such as Reach, Push, Place in single robot 
environments, algorithm development that operates stably for 
collaborative tasks in multi-robot environments has not been 
developed relatively compared to single robot tasks.  

Unlike single-robot environments, multi-robot 
environments have a non-stationary nature in which the 
stochastic changes in a multi-robot environment vary from 
hour to hour because the actions of the robots affect each other 
[8]. For example, from the perspective of a particular robot, 
the probability of the transition of the environment state due 
to the action of that robot changes along the rows of other 
robots because the action of other robots affects the outcome 
of that robot's action. This means that more empirical data is 

required than in a single-robot environment due to the wider 
range of changes in the environment state space, which can 
lead to problems such as delayed convergence time of the 
learning model and poor learning performance. The 
complexity of these problems is closely related to the design 
of the working environment. In this paper, we present three 
types of collaborative task problems: Pick-Push-Place, 
Collaborative Lift, and Handover. We also discuss the 
implementation of each task and the validation of learning 
outcomes. 

II. COLLABORATIVE MANIPULATION TASKS 
In this section, we present three kinds of work related to 

collaborative manipulation tasks. The robot used in all tasks 
consists of an arm with 6-Degrees of freedom (DoF) and a 
gripper with 1-DoF. The detailed configuration and reward 
functions for each task are described as follows. 

A. Pick-Push-Place 

 
Fig. 1. An environment for the Pick-Push-Place task. 

Figure 1 shows the environment for the Pick-Push-Place 
task, which consists of two robots and two target objects (a red 
cube and a maroon tray). In the Pick-Push-Place task, the 
success condition is defined as "the cube is placed inside the 
tray". To satisfy the success condition in this environment, the 
robot on the left grasps the cube, the robot on the right grasps 
the tray, and the two robots collaboratively place the objects 
by moving their respective grasps to the center of the table. 
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The reward functions for learning in the Pick-Push-Place 
task are defined as follows: 
l Grasping reward:  

,
 = ,       for robot  grasping object 

0,                                     for otherwise  

l Distance reward for robots: 

 ,
 = − −  

 

l Distance reward for objects:  

 , = − − 
 

l Place reward: 

 = , for the state when cube is in tray
0,                                               for otherwise  

where i is the index of the robot,   is the robot i's gripper 
position,   is the object position, and  and  are positive 
constants. Using these reward functions, a total reward for 
Pick-Push-Place task at time t is defined as 


 = ∑ ,

 + ,
  + , +  .                (1) 

 

B. Collaborative Lift 

 
Fig. 2. An environment for a Collaborative Lift task. 

Figure 2 shows an environment for a Collaborative Lift task 
consisting of two robots, a target object (red cube), a goal 
position (red sphere), and a tray with a handle (gray tray). To 
succeed in this environment, the two robots must grasp each a 
handle of the tray, then lift the tray while keeping it horizontal 
to move the target object to the goal position. 

The reward functions for learning in the Collaborative Lift 
task are defined as follows: 
l Grasping reward:  

,
 = ,    for robot  grasping handle ℎ

0,                                     for otherwise 

l Distance reward for robots: 

 ,
 = − −  

 

l Distance reward for object:  

 ,
 = − − 

 

l Lift reward: 

 = ,    for the state when cube reaches goal
0,                                                for otherwise  

 

where   is the handle position,   is the goal position, and 
 is a positive constant. Using these reward functions, a total 
reward for Collaborative Lift task at time t is defined as 

 = ∑ ,
 + ,

  + ,
 +  .                (2) 

 

C. Handover 

 
Fig. 3. An environment for the Handover task. 

Figure 3 shows the environment for the Handover task, 
which consists of two robots, a target object (red stick), a goal 
position (red sphere), and a dummy object (gray cube). In the 
handover task, the success condition is defined as "the target 
object reaches the goal position". To satisfy the success 
condition in this environment, the robot on the left must grasp 
the target object, pass it to the robot on the right, and then the 
robot on the right must move the target object to the goal 
position. 

The reward functions for learning in the Handover task are 
defined as follows: 
l Grasping reward:  

 = ,    for gripper grasping target object
0,                                          for otherwise  

l Distance reward for robots: 

 , = − − 
 

l Distance reward for object:  

 ,
 = − − 

 

l Handover reward:  

 = ,    for grasping reward pair (0, )
0,                                        for otherwise 

where  is a positive constant. Using these reward functions, 
a total reward for Handover task at time t is defined as 

 = ∑  + ,  + ,
 +  .                 (3) 

 

D. Dec-POMDP 
To deal with non-stationary problems in multi-agent 

environments, it is essential to extend Markov decision 
processes (MDPs) to distributed partially observable Markov 
decision processes (Dec-POMDPs). In a Dec-POMDP, the 
distributed partial observation setting means that the 
probability of a state transition consists of multiple actions and 
observations, under the assumption that each agent knows 
only its own actions and not the actions of other agents.  
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(a) 

 
(b) 

Fig. 4. Task verifications for the Pick-Push-Place task, (a) total rewards 
according to episodes, (b) a screenshot at the task termination. 

E. Multi-Agent Deep Deterministic Policy Gradient 
In this work, we adopt Multi-Agent Deep Deterministic 

Policy Gradient (MA-DDPG) as the baseline for the validation 
of three kinds of benchmark tasks. MA-DDPG uses a 
centralized method in the training phase and a distributed 
method in the execution phase to solve non-stationary 
problems in multi-agent environments [10]. MA-DDPG is 
based on the Actor-Critic method, where the policies of 
multiple agents corresponding to actors are executed and 
updated in a distributed manner, and the value functions 
corresponding to critics are updated in a centralized manner. 
The value function is updated through a centralized method 
given all the action information of the agents, so the non-
stationary problem does not affect it. Since each agent's policy 
is learned through this centralized value function and does not 
take into account the actions of other agents, multiple agents 
act in a distributed manner. 

III. SIMULATION RESULT 

A. Environment Implemenation 
The collaborative task environments are implemented 

based on the Robot Learning Benchmark and Learning 
Environment (RLBench) [11]. RLBench provides an interface 
to easily create different task models. RLBench was 
developed based on Copeliasim and Pyreb. Coppeliasim was 
developed to facilitate the design and verification of robotic 
algorithms, robot simulation and training, and virtual world-
based safety checks. PyRep is a toolkit for robot learning that 
utilizes CoppeliaSim and was developed to run CoppeliaSim 
in Python. 

 
(a) 

 
(b) 

Fig. 5. Task verifications for the Collaborative task, (a) total rewards 
according to episodes, (b) a screenshot at the task termination. 

RLBench provides graphical user interface-based design 
tools and functionality for users who want to design new robot 
manipulation tasks. Designing a task requires two details: an 
environment model and a description. The environment model 
contains all three-dimensional scene information, such as the 
positions and properties of objects. The description includes 
the success condition for the task, and the definition of 
rewards function for the robot actions.  

B. Network Implemenation and Learning Setting 
The implementation of MA-DDPG is identical to the 

structure and hyperparameters in [10]. Each policy and value 
function is parameterized by a two-layer ReLU MLP with 64 
units per layer. During the learning process, the maximum 
length per episode is set to 50 and the maximum number of 
episodes to 50000. 

C. Task Verification 
Figure 4 shows task verifications for the Pick-Push-Place 

task, where Figures 4(a) and (b) represent total rewards 
according to episodes and a screenshot at the task termination, 
respectively. As shown in Figure 4(a), performance increases 
steeply with increasing the distance reward until about 10000 
episodes, and then goes through a phase of learning the 
grasping reward until about 50000 episodes. At about 65000 
episodes, the maximum performance is achieved with the 
place reward, after which the performance drops due to further 
exploration and then increases again. As shown in Figure4(b), 
the Pick-Push-Place task is completed by collaboration 
between the two robots. 
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(a) 

 
(b) 

Fig. 6. Task verifications for the Handover task, (a) total rewards according 
to episodes, (b) a screenshot at the task termination. 

Figure 5 shows the task validation for Collaborative Lift 
task. As shown in Figure 5(a), the performance increases 
rapidly as the grasping reward increases until about 10000 
episodes, then it goes through a phase where it tries to learn 
the lift reward until about 35000 episodes. After about 35000 
trials, it can be seen that the lift reward gradually increases as 
the two robots collaborate to balance the tray. At around 
70000 iterations, the maximum performance is reached and 
convergence is shown. As shown in Fig. 5(b), the 
Collaborative Lift Task is completed by the collaboration of 
the two robots to balance the tray. 

Figure 6 shows the task validation for the handover task. 
As observed in Figure 6(a), the performance initially increases 
but reaches a limit. More specifically, the first robot is able to 
grasp the target object, but the second robot is not able to grasp 
the target object, i.e., no handover is performed. One of the 
reasons why the handover task is difficult to solve with 

learning is the credit assignment problem. Since handovers are 
performed by acting in different directions on the same object, 
it is difficult to determine how much each robot's action 
contributed to the reward in terms of a single summed reward, 
i.e., the credit assignment problem. Another reason is that we 
need to look at it from the perspective of the first robot. 
Handover means that the first robot gives up the grasping 
reward on its own. As distributed actors, the robots learn their 
actions based on optimization in a greedy manner, so during 
the learning process, the first robot does not give up the 
grasping reward and the handover is not completed. 

IV. CONLUSION 
In this paper, we define three types of collaborative tasks, 

including Pick-Push-Place, Collaborative Lift, and Handover, 
and verify them using the base algorithm MA-DDPG. The 
simulation results show that the simple application of MA-
DDPG is limited in solving collaborative tasks that are highly 
affected by the credit assignment problem, such as handover. 
In future work, we would like to conduct research to solve 
credit assignment problems in collaborative tasks. 
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