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Abstract— Recent advancements in the field of 

representation learning and video prediction have 

demonstrated the potential for enhancing manipulation and 

control strategies across various applications through precise 

anticipation of future states. Nevertheless, the intricate dynamic 

nature inherent in real-world data poses a formidable challenge 

in acquiring these representations. Autoregressive models, 

which employ the generated future frame as input for the 

subsequent frame prediction, suffer from issues such as 

compounding errors, memory overload, and extended training 

times due to the need for reconstructing the state from the latent 

vector in each iteration. To address these limitations, recent 

studies have introduced the concept of State Space Models 

(SSMs) to forecast from the latent space, offering the advantage 

of predicting distant future states. However, these 

methodologies often exhibit restricted capabilities in extracting 

object-centric representations. More recent object-centric 

approaches concentrate on closely associated features from the 

input data, yet their ability to capture higher-level 

representations remains constrained. In this paper, we propose 

integrating a perceptual network into the slot attention 

mechanism to facilitate the extraction and segregation of high-

level representations. Leveraging a pre-trained perceptual 

network, we derive elevated object-oriented representations for 

each perceptual layer, aligning them with corresponding slots. 

This elevated representation, rich in object-centric information, 

holds the potential to enhance comprehension of the present 

state and provide valuable guidance for accurate future state 

prediction. 

Keywords— Representation Learning, Object-centric, 

Generalization, Image Analysis  

I. INTRODUCTION 

Recent progress in representation learning and video 
prediction has underscored the potential of precise future state 
prediction to enhance manipulation and control strategies 
across various domains, including edge devices [1], 
multiagent [2], autonomous driving [3], navigation [4], 
manipulation [6], drones [7] and simulators [16]. However, 
the complex and dynamic nature inherent in real-world data 
presents significant challenges in acquiring effective 
representations. 

Deterministic methods, such as RNNs, exhibit limitations 
in handling dynamic environments. Autoregressive models 
like SAVP [8], SVG [9], and SV2P [10] employ generated 
future frames as inputs for predicting subsequent frames. 
Nonetheless, these techniques repeatedly reconstruct the state 
from the latent vector, rendering them susceptible to 
compounded errors, memory issues, and prolonged training 
times [11]. 

Recent exploration of the State Space Model (SSM) 
paradigm, exemplified by PlaNet [14], seeks to leverage the 
latent space for predicting future states, offering the advantage 
of forecasting outcomes in the distant future. However, these 
approaches often encounter challenges in effectively 
capturing object-centric representations. 

Object-centric strategies, such as slot attention, have 
recently exhibited promising outcomes in representation 
learning, particularly in handling novel compositions. While 
these approaches employ attention mechanisms [12] for image 
and video predictions [13], they primarily concentrate on 
closely related input features, resulting in limited efficacy in 
extracting high-level representations. 

This study introduces the integration of a perceptual 
network with slot attention, aiming to extract and disentangle 
high-level representations. Leveraging a pre-trained 
perceptual network, we obtain elevated object-oriented 
representations for each perceptual layer, aligning them with 
the respective slots. This advanced object-oriented 
representation holds potential for enhancing the 
comprehension of the present state and providing valuable 
guidance for accurate future state prediction. 

II. METHOD 

In this paper, we introduce the Perceptual Slot Attention 
module, a novel extension of the Slot Attention module, 
designed for object-oriented perceptual representation 
learning. This new module comprises four essential 
components: the Input Module, the Perceptual Network 
Module, the Attention Module, and the Output Module.  
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Fig. 1. The Perceptual Slot Attention Module consists with four component 

which are Input Module, Perceptual Network Module, Attention Module and 
Output Module. It demonstrates the process of mapping N vector inputs to K 

slots across each perceptual layer i of the input. In this way, high dimentinal 

input resource is presented in low dimentional abstracted representation. 

 

Perceptual Slot Attention 

The objective of the Perceptual Slot Attention module is 
to map a set of N input vectors to K slots for each perceptual 
layer i of the input, as visually shown in figure 1. The 
comprehensive methodology is detailed in algorithm 1, 
presented in pseudo-code. 

The Input module receives N input vectors, each 
consisting of D dimensions. This paper specifically employs 
static images as the input source. The Perceptual Network 
module generates elevated representations for each perceptual 
layer i of the input image. To achieve this, a pre-trained  

VGG16 network [15], trained on the ImageNet dataset, is 
harnessed to extract high-level representations for each 
perceptual layer i. 

The attention module adheres to the established slot 
attention convention. For every perceptual layer i, the 
corresponding slot is initialized following a Gaussian 
distribution characterized by shared parameters μ and σ. Layer 
normalization is applied to the input, slots, and each 
perceptual layer i of the slot. The attention mechanism 
operates for T iterations on each perceptual layer i of the slot. 
During the Softmax procedure, individual slots[1..i] compete 
to capture nearby features, undergoing iterative updates. The 
temperature parameter for the Softmax function is set to a 

fixed value of √𝑁𝑁. Weighted mean is employed as the update 
mechanism to enhance stability. 

The Output module furnishes K slots as an output derived 
from the original N input vectors. This transformation 
effectively reduces the N-dimensional input to K dimensions 
while preserving high-level representations. 

III. EXPERIMENTS 

In the experiments of this study, the BAIR Push Dataset 

was utilized, and the Structural Similarity Index Map (SSIM) 

[5] was used as the evaluation metric. Taking five past frames 

as input, predictions were made for ten future frames, and the 

SSIM values were compared and analyzed against the 

Ground Truth.  

 

For the experiments of this study, input of size 64, RNN 

Layer of size 256, dimensions of 128 for 'g', and 10 for 'z' 

were utilized. Training was carried out with a batch size of 

100, using the Adam Optimizer with a momentum of 0.9, 

over 600 epochs and 300 iterations. Posterior RNN Layer and 

Predictor RNN Layer were employed in quantities of 1 and 2, 

respectively. 

 

Figure 2 presents a comparison of the performance 

between the proposed algorithm and the baseline algorithm 

SVG-LP [8]. The proposed algorithm demonstrates higher 

SSIM values from t+3 onwards. 

 

  

Fig. 2. Figure 2 illustrates the experimental outcomes, offering a 
comparative analysis of the performance between the proposed algorithm 

and the baseline algorithm SVG-LP. Notably, the proposed algorithm 

exhibits superior SSIM values starting from t+3.  

  

Algorithm 1.  The Module for Perceptual Slot 
Attention facilitates the mapping of input, comprising 
N vectors, to K slots, each having D_inputs 
dimensions, within every perceptual layer i. The slots 
for each perceptual layer are initialized randomly 
through a Gaussian distribution.  The perceptual layer 

carries high-level representation of the raw input data. 

In our experiment, we conduct 3 iterations (T = 3) 
across 4 perceptual layers (I = 4).  
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 

Input: 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ ℝ𝑁𝑁×𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖~ 𝑁𝑁(𝜇𝜇, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎)) ∈ ℝ𝐾𝐾×𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Layer params: 𝑘𝑘, 𝑞𝑞, 𝑣𝑣: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎; 
             𝑖𝑖: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙; 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

Images = LayerNormalization (images) 
for 𝑡𝑡 = 0 … 𝑇𝑇 

  for i = 0 … I 
    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 
    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = LayerNorm(slots) 
    𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 = Softmax( 1

√𝑁𝑁 𝑘𝑘(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ∙ 𝑞𝑞(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑇𝑇, 
           𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ′𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ′) 
      𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 = WeightedMean(weights=𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖+𝜖𝜖,  
              values=𝑣𝑣𝑖𝑖(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

      𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 += LayerNormalization(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) 

  return slots 
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IV. CONCLUSION  

This study introduces an approach that employs slot 
attention on the outputs of perceptual networks to acquire 
high-level representations. The pre-trained perceptual 
network generates elevated representations for each 
perceptual layer, aligning them with corresponding slots. This 
enriched object-oriented representation holds the potential to 
enhance comprehension of the present state and provide 
valuable guidance for precise future state prediction. 

Nonetheless, certain limitations exist in this research. To 
establish the efficacy of the proposed method, validation 
through testing on both images and videos is imperative, a task 
slated for future investigations. Moreover, if the approach 
were to be evaluated on simulation data, it could potentially 
extend the experiments to encompass physical manipulation 
tasks as well. 
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