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Abstract— Human gait models in the dynamic environment 

have been studied to understand the fundamental neuronal 

control system of the human. Previously, imitation learning 

methods with reinforcement learning could successfully reproduce 

human gait motions using skeletal models. However, imitation 

learning-based controllers could have lacks of the ability to 

flexibly adapt to a wide range of state spatial scenarios such as 

instabilities and falling. Recently, noise injection methods have 

been introduced to increase the flexibility and robustness of the 

controller for robot systems. Therefore, the objectives of this study 

were to train human gait controllers with the noise injection 

method and to analyze the effect of noise injections on the balance 

recovery against external forces. A three-dimensional skeletal 

human gait model and two gait controllers with and without noise 

injections were developed. The robustness of the gait controllers 

against external forces was tested via forward dynamics-based gait 

simulation. The number of simulations without falling against 

external forces increased when the gait controller was trained with 

the noise injection method. In this study, the noise injection 

method during imitation learning could enhance the robustness 

and stability of the human gait controller. 
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I. INTRODUCTION 

Human gait model simulations in the dynamics environment 
have been studied to understand the fundamental neuronal 
control system of the human [1], biomechanical pathologies of 
neuro-musculoskeletal diseases [2], and the effect of human-
assistive devices [3]. In the forward dynamics environment, the 
locomotion of human models could be simulated using gait 
controllers [1]. The gait controllers were modeled by reflecting 
the neuronal control system of the human [1, 4]. The neuronal 
control system of the human consists of afferent signals (sensory 
signals) and efferent signals (motor signals) [5]. As such, the gait 
controllers generated motor control signals such as torque and 
muscle actuation from sensory signals of dynamic states 
including joint angles and posture of human gait models [4]. 
However, the development of gait controllers reflecting the 

complexity of the neuronal control system of the human is still 
challenging. 

Recently, it has become possible to develop controllers of 
complex systems such as multi-degree-of-freedom robots due to 
the progression of artificial intelligence [6]. Deep reinforcement 
learning methods have been used to develop controllers for 
locomotion of the humanoid and quadrupedal robots [6]. 
Especially, imitation learning (IL) methods that trained the 
controllers to track the reference motions were introduced to 
implement human-like locomotion [7]. Previously, the IL 
methods could successfully reproduce walking motions using a 
skeletal human gait model in the forward dynamics environment. 
However, a previous study reported that the controllers obtained 
by the IL method were trained to generate unique actions for any 
given state although practical scenarios included multiple 
optimal solutions [8]. Thus, the IL-based controllers had lacks 
of the ability to flexibly adapt to a wide range of spatial scenarios. 
Additionally, narrow state spaces focused on reference motions 
during the IL could lead to the covariate shift problem [8]. The 
covariate shift problem resulted in divergences when the human 
gait models received unseen observations or states during the 
training. As a result, the conventional IL method had poor 
robustness and recovery performances to external disturbances.  

To overcome these limitations of conventional IL methods, 
noise injection methods have been introduced [8]. The noise 
injection methods could increase the flexibility and robustness 
of control policies of robot systems [8]. Therefore, the 
application of the noise injection method during training 
controllers of human gait models could increase the balance 
recovery performance and decrease falls against external 
disturbances. The objectives of this study were to train the IL-
based gait controllers with or without the noise injection method 
and to analyze the effect of noise injection on the balance 
recovery performance from external forces. A three-
dimensional full-body skeletal human model was developed to 
implement the gait simulation using IL-based gait controllers. 
The IL-based gait controllers were prepared with and without 
the noise injection method. In the case of noise injections, the 
Gaussian noises were applied to the observation vector to 
increase the robustness of the controller. 
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II. METHODS 

A. Three-dimensional full-body human gait model 

A three-dimensional full-body human gait model was 
developed in the MuJoCo dynamics environment. Skeletal 
geometries including segment dynamics information such as 
masses, inertias, and center of mass’s positions were obtained 
from a previously published full-body model in OpenSim [9]. A 
mechanical joint configuration of the full-body human gait 
model was modified from the original OpenSim model [9]. A 
total of 34 degree-of-freedom was used in the human gait model 
including spherical, revolute, and universal joints. The neck, 
shoulder, back, and hip were modeled as spherical joints. The 
elbow, knee, and metatarsal phalanges were modeled as revolute 
joints. The ankle was modeled as a universal joint with 
plantarflexion-dorsi flexion and varus-valgus rotations. The 
ground-foot contacts were implemented in three spheres on each 
plantar surface (Fig. 1). The human gait model was actuated by 
ideal torque actuators in the directions of each joint’s degree-of-
freedom. 

 

Fig. 1. A three-dimensional human gait model of 34 degree-of-freedom 

 

B. Imitation learning method with deep reinforcement 

learning for training a gait controller 

An initial gait controller without noise injections of the 
human gait model was trained using an IL method (Fig. 2). The 
gait controller was designed using a fully-connected artificial 
neural network with two hidden layers of 512 by 256. A state 
vector as an input of the gait controller consisted of pelvis 
orientation, pelvis height, generalized coordinates, and 
generalized velocities. Then, it generated ideal torques of all 
joints from the state input vector. 

An openly published gait data from CMU Graphics Lab 
Motion Capture Database was used to prepare reference gait 
kinematics. The reference gait kinematics was made by 
modifying the degree-of-freedom of the gait data to match that 
of the human gait model. A reward value of how well the human 
gait model tracked the reference gait kinematics was estimated 
according to a reference study [10]. Specifically, the reward 
value was calculated by comparing four terms of generalized 
coordinates, generalized velocities, positions of the hands and 
feet, and positions of the body’s center of mass between the 
human gait model and reference gait kinematics. 

The policy proximal optimization algorithm was used to 
update the neural network parameters of the gait controller 

during the IL method with DRL. A total of 16k samples, which 
were obtained from 200 environments and 800 simulation time 
steps, were used to update the gait controller at once. After 25k 
updates, the initial gait controller without noise injections was 
obtained. The initial gait controller was trained to generate an 
action vector of joint torques for a given state vector in order to 
track the reference gait kinematics. 

 

C. Fine-tuning of a gait controller with a noise injection 

method 

The initial gait controller without noise injection was fine-
tuned to obtain a robust gait controller by applying noise 
injections during IL. The noise was added in the state vector with 
no changes in IL setting such as a reward function and the 
number of samples for each update. The state vector included 
generalized coordinates in meters and radians, and generalized 
velocities in meters per second and radians per second. The 
noise was determined by the Gaussian distribution. The mean of 
the noise was set by zero and the standard deviation was 
dependent on units of state values. The standard deviations 
concerning translations, rotations, translational velocities, and 
rotational velocities were set by 0.1 m, 0.35 rad, 1.0 m/s, and 3.5 
rad/s, respectively. The fine-tuning was conducted for 10k 
updates. 

 

Fig. 2. Imitation learning for training a human gait model in the forward 

dynamics environment 

 

D. Gait simulation to quantify the effect of noise injections on 

the robustness of the gait controller 

The robustness of the gait controller with and without noise 
injections was tested through 1,000 repeated gait simulations. 
The robustness tests were conducted for three different forces of 
500 N, 1,000 N, and 1,500 N and three different directions of 
front, side, and rear. A total of 9,000 simulations were performed 
for 9 combinations of three forces and three directions. During 
the gait simulations, the external force was applied to the pelvis 
for 0.05 seconds after 2 seconds from the simulation start. The 
number of simulations without falling for 10 seconds was 
counted to quantify the robustness of the gait controllers. 
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III. RESULTS 

The number of simulations without falling against external 
forces increased when the gait controller was trained with the 
noise injection method (TABLE 1). For all forces and directions, 
the gait controller with noise injections had higher survivals than 
the gait controller without noise injections. The gait controller 
without noise injections survived hardly during the 1,000 
repeated simulations. Only 6, 27, and 3 simulations survived for 
forward, lateral, and backward forces of 500 N, respectively. 
Whereas, the gait controller with noise injections did not 
experience falling under the same force condition. 

In the case of the gait controller with noise injections, the 
number of survivals without falling was the largest in the 
forward force, followed by the side force. Although about 90 % 
of the gait simulations survived under the forward force of 1,000 
N, about 60% of the gait simulations survived under the 
backward force of 1,000 N. Additionally, about 50 % and 10 % 
of the simulations survived for forward and backward forces of 
1,500 N, respectively. 

TABLE I.  NUMBER OF SURVIVALS WITHOUT FALLING AGAINST 

EXTERNAL FORCES DURING 1,000 REPEATED GAIT SIMULATIONS 

 w/o noise 
injections 

w/ noise 
injections 

Forward 

direction 
force 

500 N 6 1,000 

1,000 N 2 891 

1,500 N 0 505 

Side 

direction 

force 

500 N 27 1,000 

1,000 N 20 739 

1,500 N 22 392 

Backward 
direction 

force 

500 N 3 1,000 

1,000 N 1 622 

1,500 N 0 134 

 

IV. DISCUSSION 

In this study, we quantified the effect of the noise injection 
method on the robustness of a gait controller against external 
forces. The noise injections could improve the fall prevention 
performance when the external forces in the directions of front, 
side, and rear were applied to the pelvis during walking. In other 
words, the gait controller with noise injections decreased the 
number of falls against the external forces, although the gait 
controller trained by conventional IL without noise injections 
mostly experienced falls due to the side forces (Fig. 3). 

When the gait controllers were trained, the noise injection 
methods could expand the diversities of state spaces from the 
optimal unique solution during IL [8]. Thus, the gait controllers 
experienced state spaces that had the possibility to diverge and 
fall during the control of the human gait model. These state 
space samples during IL made the gait controller train to recover 
stabilities from the state spaces with the potential to diverge and 
fall. Thus, the noise injection method could improve the 

robustness of the gait controller against external disturbances 
such as external forces and partially compensate for the 
covariate shift problem of IL [8]. 

 

Fig. 3. The robustness of the gait controllers with and without noise injections 

against external forces 

 

Gait instabilities such as falling are associated with the 
horizontal velocity of the center of mass and foot placement 
positions [11]. Especially, medial-lateral perturbations such as 
side forces and very slow gait speed could affect the center of 
mass’s trajectories and induce gait instabilities [12]. In the case 
of humans, the decrease in gait stabilities could be compensated 
by wide step and upper body dynamics [11, 12]. However, the 
IL-based gait controller could not be trained including these 
stability compensation strategies. Thus, the conventional IL-
based gait controllers had a lack of stability against side and 
backward direction forces. However, the gait controller with 
noise injections could retain some stabilities against the side and 
backward forces. In conclusion, the noise injection method 
during IL for the human gait model helps improve the robustness 
and stability of the IL-based gait controller. 
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