

Knowledge-Based Reinforcement Learning for
Industrial Robotic Assembly

1st In Jun Park
Digital Convergence Research

Laboratory
Electornics and

Telecommunications Research
Institute

Daejeon, South Korea
ijpark@etri.re.kr

2nd Hyonyoung Han
Digital Convergence Research

Laboratory
Electornics and

Telecommunications Research
Institute

Daejeon, South Korea
hyonyoung.han@etri.re.kr

3rd Joonmyun Cho
Digital Convergence Research

Laboratory
Electornics and

Telecommunications Research
Institute

Daejeon, South Korea
jmcho@etri.re.kr

4th Jun Hee Park
Digital Convergence Research

Laboratory
Electornics and

Telecommunications Research
Institute

Daejeon, South Korea
juni@etri.re.kr

Abstract—Although reinforcement learning has shown
promise in solving industrial assembly tasks, it still faces
challenges such as poor sample efficiency and sparse rewards that
limit its learning capability. To address these challenges, we split
multi-step assembly tasks into modular sub-tasks and use CAD-
based prior knowledge to facilitate sub-task learning. The
geometric information from the knowledge extraction module
accelerates the learning of grasping and placing. Instead of
considering multiple possible placement errors in a jig-free
environment during training, which would significantly increase
training time, our method uses a compensation module with a
spatial transformer network to deal with errors. We evaluated our
method on two 3D-printed models with different materials and
achieved a completion success rate of 96% for the plastic model
and 94% for the metal model. Our results indicate that our model
can be robustly applied to products with similar geometry without
requiring additional model updates.

Keywords—Industrial Assembly, Robotic Manipulation,
Reinforcement Learning

I. INTRODUCTION
Industrial robotic assembly remains a challenging problem,

as it involves multi-step tasks that require high precision. With
the shift towards more flexible and dynamic manufacturing
environments, where expensive jigs and fixtures are no longer
used for accommodating various product types, finding effective
solutions has become even more important [1]. Deep
reinforcement learning methods have been applied to solve
robotic manipulation tasks, such as industrial insertion, due to
their flexibility and adaptability [2, 3, 4, 5]. However, an end-to-
end reinforcement learning approach with sparse rewards has
limitations in solving multi-step tasks as it often wanders in large
state-action spaces, performing mostly unsuccessful actions.
Some recent studies have attempted to use imitation learning [6,
7, 8] to address the issue of sparse rewards, as it provides
guidance for robots to take correct actions. Although these
studies have shown successful results in various insertion tasks,
they rely on expert demonstrations, which may not be feasible
in an industrial manufacturing setting. Meta-reinforcement
learning is another approach to solving multiple insertion tasks
by learning common knowledge across different but similar

types of tasks and adapting to new tasks with a small amount of
data [5, 9]. However, this method has barriers to being applied
in a manufacturing system, as assembly of industrial products is
performed sequentially, meaning that tasks change over time. It
is impractical to have an adaptation phase every time a new task
is given in the middle of the assembly process.

Most studies on insertion tasks have been based on contact-
rich manipulation [7, 8, 10, 11, 12] using force sensors, which
requires one part to be fixed so that proper actions can be learned
from the interactions between the parts. As we aim to target a
manufacturing environment without jigs or fixtures, where parts
can move in the XY-plane during insertion, we adopt a vision-
based system, which is more capable of handling relatively large
placement errors. We only use a single camera mounted on the
robot arm, which is a simple and cost-effective configuration.

In this work, we propose a data-efficient method for multi-
step industrial assembly using knowledge-based reinforcement
learning. Our model, aiming to complete assembly tasks for a
finished product, consists of distinct modules rather than an end-
to-end solution. Utilizing the step design file common in
industry, we developed an analyzer to extract knowledge about
product structures and assembly tasks, reducing training time for
skills like grasping and placing. The grasping and placing
models were trained in simulation under standard conditions,
ignoring placement errors, with a separate compensation module
for unexpected errors. Our method, tested on two 3D-printed
product models of different materials, achieved a 96% success
rate with plastics and 94% with metal, without further adaptation.

II. RELATED WORKS
CAD-based knowledge is proven effective in robotic

assembly tasks. In [13], the CAD file was used to create a motion
plan guiding reinforcement learning. [14] used the CAD file for
instruction generation, perception, and planning. In [15], CAD
data-derived component poses combined with compliance
control adapted quickly to new assembly tasks. Similarly, our
method leverages knowledge from a standard CAD file (STEP
file) to enhance reinforcement learning for manipulation skill
acquisition.

1684979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

Numerous studies have explored robotic grasping with
reinforcement learning. QT-Opt [16] developed a system
learning grasping from extensive real robot data, though its
hardware and computational resources are not broadly
applicable. Conversely, [17] proposed a simulated grasping
benchmark using off-policy learning, highlighting deep Q-
learning's superiority in low data scenarios. VPG [18] improved
grasping in cluttered environments using deep Q-learning and
pushing. However, most models overlook grasping quality,
often dropping objects into bins. We adopt VPG for our grasping
model, modifying environmental configurations and design,
such as the reward function, to emphasize quality. Our placing
model shares the grasping model's architecture but alters the
exploration strategy with an action prior based on heightmap,
akin to [19], without replacing the temporal difference target to
prevent fade-out during training.

III. METHODS
To make the assembly task more manageable, we break it

down into modular sub-tasks instead of relying solely on
reinforcement learning. Furthermore, we integrate the
knowledge derived from the 3D product STEP file to streamline
RL training by minimizing learning parameters and enhancing
sample efficiency. Our system consists of six modules, as shown
in Fig. 1: a knowledge extraction module, a task planning
module, a motion planning module, a grasping module, a
placing module, and a compensation module.

A. Knowledge Extraction Module
Industrial products use the STEP (Standard for the Exchange

of Product Data) file for 3D product modeling [20]. We extract
product structures and assembly descriptions from STEP using
a part analyzer from [21]. The extraction involves several steps.
Initially, the STEP analyzer reorganizes product details into a
database using a regular expression library. The part analyzer
then extracts all parts, analyzing their edges to compute
min/max values in 3D space, determining size and position.
Considering only stack-structured industrial products, the
assembly analyzer sequences parts by their bottom line height,
starting with the lowest. Parts are paired by their sequence, and

the assembly analyzer identifies joint types like peg-in-hole or
snap-fit in the final analysis step.

The analyzers' data is vital for various modules. For example,
the part analyzer's height data aids the grasping module in
reducing the action space dimension of the reinforcement
learning-based grasping model, accelerating training. The part
position, also from the part analyzer, informs the placing
module's reward function. This reward is calculated based on
successful part joining, with the final part position indicating
success. The task planning module assigns tasks for each step,
relying on assembly sequences and joint types from the task
analyzer to execute the assembly task.

B. Task/Motion Planning Module
The task planning module oversees the system, accessing

data on part size, position, initial location, and assembly
sequence to determine tasks. It assigns basic actions like
reaching, grasping, placing, and inserting, each characterized by
the gripper's 6D pose. For the reach action, the wrist camera
centers on the workspace for a top-view depth image of the
target part. The grasp and place actions use the gripper's pose
from respective modules, while the insert action is a vertical
movement from the place position. Joint types are sequences of
basic actions: reach, grasp, place, and insert. The force during
the insert action differentiates peg-in-hole (no force, loose
coupling) from snap-fit (force for tight joining). The motion
planning module, using the Moveit library [22] based on OMPL
algorithms [23], manages the robot arm and gripper, including
path planning and gripper actions. Grasp success is gauged by
the gripper fingers' distance, with success under a specific
threshold.

C. Grasping Module
The grasping model is based on vision-based reinforcement

learning, where the z-axis of the grasping pose can be
determined by the part size extracted from the part analyzer.
Thus, we assume that planar motion and rotation around the z-
axis of the gripper are sufficient to complete the task, and reduce
the dimension of the action space from 6D to 3D, defined by
(x, y, 𝜑𝜑𝜑. This reduction saves a significant amount of training

Fig. 1. System overview: The system is composed of modular sub-tasks that interact with each other. Each module is responsible for a specific task, including
knowledge extraction, task planning, motion planning, grasping, placing, and error compensation.

1685

time and increases the chance of successful training. We modify
the grasping model from VPG [18], as depicted in Fig. 2, by
incorporating reward shaping and using only the depth image as
input. Additionally, instead of using a fixed global camera to
cover the entire workspace and randomly grasping objects, we
mount the wrist camera on the robot arm and move it to the
target assembly part assigned by the task planner to obtain the
depth image. Since the grasping model is trained separately from
the placing model, the placing model does not receive any
feedback on the grasp pose. Therefore, the gripper must grasp
the part stably, with no shifting or tilting allowed. We define the
reward function as (1), which values grasping with minimal
distance between the gripper's position and the part's center
position in x and y coordinates.
𝑹𝑹𝑹𝑹𝑹𝒕𝒕, 𝒂𝒂𝒕𝒕) =

�

𝟏𝟏
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏gripper,(𝒙𝒙𝒄𝒄,𝒚𝒚𝒄𝒄)part)

, if 𝟏𝟏
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏gripper,(𝒙𝒙𝒄𝒄,𝒚𝒚𝒄𝒄)part)

> 𝜺𝜺𝒕𝒕𝒕𝒕
𝟎𝟎𝟎otherwise

(1)

D. Placing Model
The place action is the primary action that must be

performed before insertion. Since insertion, which is the
fundamental action for peg-in-hole and snap-fit, is defined as a
top-down movement from the placing pose, it is crucial to
estimate the precise placing pose in order to successfully
complete the assembly task. The placing model has the same
architecture as the grasping model, as it infers the best placing
pose (x, y, 𝜑𝜑𝜑 from the depth heightmap of the target part, except
that the reward function and exploration strategy are defined
differently. Since each part position of the completed product is
known and extracted from the part analyzer, the success or
failure of the assembly can be determined based on whether the
x and y positions of two parts match and the height of the part
coincides with the one from the analyzer. If the grasped part A
is successfully placed and inserted into part B, the reward
function is formulated as follows:
𝑅𝑅𝑅𝑅𝑅𝑡𝑡, 𝑎𝑎𝑡𝑡) =

�
1, if �𝑥𝑥part A − 𝑥𝑥part B� < 𝜀𝜀𝑡𝑡𝑡, �𝑦𝑦part A − 𝑦𝑦part B� < 𝜀𝜀𝑡𝑡𝑡, �𝑧𝑧part A − 𝑧𝑧height A� < 𝜀𝜀𝑡𝑡𝑡
0, otherwise

 (2)

The state of the model is represented by the heightmap image,
which provides information about the area where the part exists.
As exploring empty areas is a waste of time, this insight can be
reflected in the action prior defined as (3).

𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝑡𝑡, 𝑎𝑎𝑡𝑡) = �
1, if 𝑠𝑠𝑡𝑡 > 0
0, otherwise (3)

The action prior is applied to the Q-map and limits the action
space by incorporating it into the action selection process. The
modified action selection process, which leads to an
improvement in sample efficiency, can be represented as:

 𝑎𝑎𝑡𝑡 = max
𝑎𝑎𝑡𝑡

𝑄𝑄𝑄𝑄𝑄𝑡𝑡, 𝑎𝑎𝑡𝑡) 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝑡𝑡, 𝑎𝑎𝑡𝑡) (4)

E. Placement Error Compensation
In a jig-free environment, the assembly parts can move in the

x-y directions while being inserted into the target part. This
movement can cause errors and potentially lead to assembly
failure, as our placing model is trained under the assumption that
the target part is always located at the center of the workspace.
Therefore, if the target part is shifted in the x or y-axis, the
performance of the placing model may degrade, resulting in a
failure of the assembly process.

To address this issue, we incorporate a compensation
module using a spatial transformer network [24], which learns
the affine transformation of the input image. The affine
transformation is a linear transformation that includes
translation, scaling, rotation, shears, and their combinations,
preserving points, lines, and planes [25]. The spatial transformer
network is originally designed for learning models that are
geometrically invariant to diversely transformed images,
facilitating tasks such as image classification and localization
[24]. We use this network to learn how much the input image is
transformed from the reference image in an unsupervised
manner by reconstructing the target reference image. This
approach is similar to the work in [26], but we do not apply the
reference image to the network. Instead, we only use it for
computing loss during the training. Fig. 3 illustrates the
architecture of the spatial transformer network applied to our
product model. The localization network takes the transformed
input image and produces a 2x3 parameter matrix related to
scaling, rotation, and translation. The grid generator transforms
the regular grid over the output image to the sampling grid. The
sampler produces the transformed output image by applying the
sampling grid to the input image. Instead of computing the loss
from the label like image classification, we use the mean squared
error between the reference image and the output image as the
loss for training. Thus, the loss function is given by:

Loss =
1
𝐾𝐾
��

1
𝑁𝑁

1
𝑀𝑀
���IRef(𝑖𝑖𝑖 𝑖𝑖) − ITrans(𝑖𝑖𝑖 𝑖𝑖)�2

𝑀𝑀

𝑗𝑗𝑗𝑗

𝑁𝑁

𝑖𝑖𝑖𝑖

� (5)
𝐾𝐾

𝑘𝑘𝑘𝑘

Fig. 3. Placement error compensation using STN.

Fig. 2. The architecture of the grasping and placing model based on deep-
Q learning.

1686

Here, 𝐾𝐾 denotes the batch size of input images, and 𝑁𝑁 , 𝑀𝑀 are
the width and height of the image, respectively. In our product
model, IRef represents the image of the target part located at the
center of the workspace, which is used during the training of the
placing model. The learned placing pose can then be
compensated with the parameters estimated from the spatial
transformer network to perform the insert action properly. The
transformation parameters can be expressed as a 2x3 matrix:

�
𝜃𝜃11 𝜃𝜃12 𝜃𝜃13
𝜃𝜃21 𝜃𝜃22 𝜃𝜃23� = �

 s ·cos ∆𝜑𝜑 -s ·sin ∆𝜑𝜑 𝜑𝜑𝜑
s ·sin ∆𝜑𝜑 s ·cos ∆𝜑𝜑 𝜑𝜑𝜑� (6)

where the scaling factor is given by 𝑠𝑠 𝑠 √𝜃𝜃11
2 + 𝜃𝜃12

2, the rotation
angle ∆𝜑𝜑 is computed as ∆𝜑𝜑 𝜑 𝜑𝜑𝜑−1

�− 𝜃𝜃12
𝜃𝜃11�

, and the translation
values in the x and y directions are denoted by ∆𝑥𝑥 and ∆𝑦𝑦,
respectively. Using these parameters, we can compute the
compensated placing pose as follows:

�𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� = (𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝑥𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝑦𝑦𝑦𝑦𝑦 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝜑𝜑𝜑 (7)

IV. EXPERIMENTS

A. Experimental Setup

Fig. 4 illustrates the experimental setup and the test objects
used in our real-world experiments. The multi-step assembly
task was performed using a UR5 robot arm equipped with a
Robotiq 2F-85 gripper. To capture the depth image of the target
part, we mounted a RealSense L515 camera on the robot wrist.
We evaluated our method using two 3D-printed product models
made of different materials, namely plastics and metal. This
allowed us to assess the generalization capability of our
assembly model to similar types of products without requiring
additional adaptation.

B. Knowledge Extraction Using Product Analyzer
To generate knowledge about the test product, we used the

product analyzer, which comprises step, part, and task analyzers.
Fig. 5 displays the extracted information about the parts
composing the test product from the test product step file. The
product's structure describes the list of joints and parts
comprising each joint. The test product has four joints where
each joint is composed of a pair of parts, except that the first
joint is just a single part. The size of each part is expressed in

Cartesian coordinates. The extracted locations of the parts
indicate the part position (x, y, z) when the assembly is
successfully completed. The task analyzer analyzes the
assembly sequences, which are also shown in Fig. 5. Each step
is specified with the parts required for conducting the task and
the necessary joint type. The test product requires four steps to
finish the tasks. At the first step, the bottom is picked and placed
at the center of the workspace. Then, the shaft is snap-fitted to
the bottom. Next, the peg-in-hole between the spring and shaft
is performed. At the last step, the top is snap-fitted to the shaft.

C. Training in Simulation
Grasping Model: The grasping model was trained in a

simulated CoppeliaSim environment [27]. The product's 3D
CAD file was converted to an STL format for CoppeliaSim.
Each part was assumed to have a fixed position, depicted in Fig.
4. In each training episode, the wrist camera approached the
target part, capturing a 224x224 pixel cropped depth image. This
image was transformed into a heightmap and input into the
grasping network to determine the most stable grasp pose. The
reward function, given by (1), gauged the grasp quality, with the
model learning the most stable grasps without compromising
placing performance. Fig. 6 displays the grasping test results,
showing all parts centrally grasped, the optimal position. Given
the cylindrical nature of all parts, grasp rotation didn't impact
performance.

Placing Model: The training of the placing model was also
conducted in simulation, assuming a stably grasped part and a
centrally positioned target part, with no target part movement
considered. In each episode, the wrist camera's depth image of
the target part is converted into a heightmap. The placing model
learns the pose for successful part mating, performing random
tasks from the assembly sequences in each episode, as depicted
in Fig. 7. Along with the inserting action, the model learns three
different assembly types. After convergence, successful placing
and joining of parts occur, as shown in Fig. 7. The learning curve
in Fig. 8 illustrates the assembly success rate over training, with
the action prior defined in (3) accelerating learning compared to

Fig. 5. Knowledge extraction: part analyzer(left) and the task analyzer

Fig. 4. Real-world experiment setup (upper) and test products (lower). Fig. 6. Grasping test results in simulation

1687

without it. Training was also attempted with target part
movement in the x-y axis during insertion for a jig-free
environment, but the model failed to learn the placing pose even
after extended training. The high precision required for
assembly makes finding a solution in random settings highly
challenging.

Compensation Model: The compensation model employs a
spatial transformer network to learn translations and rotations
compensating for target part spatial transformations. For
training, 60,000 transformed images were generated from three
reference images used in the placing model training. These
images were top-down views of centered target parts. Scaling
ranged from 0.5 to 1.2 in 0.1 increments, translation from -5 cm
to 5 cm in 1 cm steps, and rotation from 0° to 360° in 45° steps.
The model was assessed with 5,000 transformed images. Table
1 displays the root mean squared error of estimated parameters,
excluding rotation due to cylindrical part shapes. The average
translation error was under one pixel, suggesting accurate
placing pose compensation. Fig. 9 presents test results from 24
images, confirming the model's precise spatial parameter
learning and its ability to match input images to reference
images.

TABLE I. RESULTS OF COMPENSATION MODEL EVALUATION

Transformation Parameters RMSE

Scaling 0.0149

Translation
∆𝑥𝑥 0.6722

∆𝑦𝑦 0.6061

D. Real-World Results
We tested our system in a real-world setting, depicted in Fig.

10, with the setup detailed in section A. Aiming to successfully
complete a multi-step assembly for a finished product, we
evaluated grasping, placing, and overall completion. We
examined two product models with similar structures but
slightly different sizes, shapes, and materials (plastics and metal).
Across 100 trials (50 for each product), we intentionally
displaced the target part up to 5 cm from the center in 80% of
trials to induce placement errors. The results in Table 2 revealed
a high assembly accuracy of 96% for plastics and 94% for metal.
Failures stemmed from unstable grasping, where the estimated
grasp pose deviated from the part's center. We concluded that
further training was unnecessary for products with similar
shapes and sizes.

TABLE II. ASSEMBLY TASK SUCCESS RATE (%)

Success Rate
(%)

Product Material

Plastics Metal

Grasping

Bottom 100 100

Shaft 96 (48/50) 94 (47/50)

Spring 100 100

Top 100 100

Placing
&

Inserting

Bottom-Shaft 100 100

Shaft-Spring 100 100

Spring-Top 100 100

Completion 96 94

Fig. 10. Multi-step assembly execution using UR5 with two products.

Fig. 7. Training the placing model in simulation

Fig. 9. The results of spatial transformer network.

Fig. 8. Learning curve for the placing model. The model using the action prior
learns faster. Training fails under the random setting.

1688

V. DISCUSSION AND FUTURE WORK
We present a method for tackling multi-step industrial

assembly tasks using knowledge-based reinforcement learning,
which successfully completed the tasks with a high accuracy of
96%. For future work, we aim to examine this method on various
product types with more complex structures and shapes.
Additionally, we plan to consider a more flexible environment
where parts are randomly placed on a workspace or stacked in
bins, as seen in real manufacturing settings. This will require a
perception module capable of identifying each part's ID and
estimating its position, allowing the task planner to assign
appropriate parts for grasping and placing. Furthermore, we will
study the vision-based decision module to determine the success
or failure of the assembly at each step.

ACKNOWLEDGMENT
This work was supported by Electronics and

Telecommunications Research Institute (ETRI) grant funded
by the Korean government (23ZR1130, A Study of Hyper-
Connected Thinking Internet Technology by autonomous
connecting, controlling and evolving ways) and Institute of
Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korean government
(MSIT) (No.2022-0-00187, Development of an edge brain
framework to make manufacturing equipment and robots
intelligent and No.2022-0-01049, Development of teaching-
less product assembly system for smart factory based on
autonomous robot task planning and manipulation). We would
like to extend our special thanks to Jae Young Lee, a Ph.D.
student in SSIT Lab. at KAIST, for his valuable suggestions
and insightful discussions.

REFERENCES
[1] H. Lasi, P. Fettke, and H.-G. Kemper, T. Feld, and M. Hoffmann,

“Industry 4.0,” in Business & Information Systems Engineering, 2014, vol.
6, no. 4, pp. 239–242.

[2] G. Schoettler, A. Nair, J. Luo, S. Bahl, JA. Ojea, E. Solowjow, and S.
Levine, “Deep reinforcement learning for industrial insertion tasks with
visual inputs and natural rewards,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp. 5548–
5555.

[3] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya and R. Tachibana,
“Deep reinforcement learning for high precision assembly tasks,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 819-825.

[4] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar, and
P. Abbeel, “Reinforcement learning on variable impedance controller for
high-precision robotic assembly,” in 2019 International Conference on
Robotics and Automation (ICRA) IEEE, 2019, pp. 3080–3087.

[5] G. Schoettler, A. Nair, J. A. Ojea, S. Levine and E. Solowjow, “Meta-
reinforcement learning for robotic industrial insertion tasks,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020, pp. 9728-9735.

[6] L. Berscheid, P. Meißner, T. Kröger, “Self-supervised learning for precise
pick-and-place without object model,” IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 4828-35, June 2020.

[7] Y. Wang, CC. Beltran-Hernandez, W. Wan, K. Harada, “An adaptive
imitation learning framework for robotic complex contact-rich insertion
tasks,” Front Robot AI, vol. 8, no. 777363, Jan. 2022.

[8] O. Spector, V. Tchuiev, and D. Di Castro, “InsertionNet 2.0: minimal
contact multi-step insertion using multimodal multiview sensory input,”
in 2022 International Conference on Robotics and Automation (ICRA),
2022, pp. 6330-6336.

[9] TZ. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz, S.
Schaal, and S. Levine, “Offline meta-reinforcement learning for industrial
insertion,” in 2022 International Conference on Robotics and Automation
(ICRA), 2022, pp. 6386-6393.

[10] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich
manipulation skills with guided policy search,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), 2015, pp.
156-163.

[11] T. Davchev, K. S. Luck, M. Burke, F. Meier, S. Schaal and S.
Ramamoorthy, “Residual learning from demonstration: adapting DMPs
for contact-rich manipulation,” in IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4488-4495.

[12] O. Spector and M. Zacksenhouse, “Deep reinforcement learning for
contact-rich skills using compliant movement primitives,” arXiv preprint
arXiv:2008.13223, 2020.

[13] G. Thomas, M. Chien, A. Tamar, J. A. Ojea and P. Abbeel, “Learning
robotic assembly from CAD,” 2018 IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 3524-3531.

[14] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Ikeabot: An
autonomous multi-robot coordinated furniture assembly system,” in IEEE
International Conference on Robotics and Automation (ICRA), 2013, pp.
855–862.

[15] G. Gorjup, G. Gao, A. Dwivedi and M. Liarokapis, “A flexible robotic
assembly system combining CAD-based localization, compliance control,
and a multi-modal gripper,” in IEEE Robotics and Automation Letters,
vol. 6, no. 4, pp. 8639-8646.

[16] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D.
Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Scalable deep reinforcement learning for vision-based robotic
manipulation,” in Conference on Robot Learning (CoRL), 2018, pp. 651-
673.

[17] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, S. Levine, “Deep
reinforcement learning for vision-based robotic grasping: A simulated
comparative evaluation of off-policy methods,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018, pp.
6284-6291.

[18] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 4238-
4245.

[19] A. Hundt, B. Killeen, N. Greene, H. Wu, H. Kwon, C. Paxton, GD. Hager,
“Good robot!”: Efficient reinforcement learning for multi-step visual
tasks with sim to real transfer”, IEEE Robotics and Automation Letters,
vol. 5, no. 4, pp. 6724-6731, 2020.

[20] "STEP-file, ISO 10303-21”, Library of Congress. Jan. 2017.
[21] H. Han, H. Kim and J. Son, “Product description recipe generation from

3D STEP model for autonomous task planning,” in 2021 21st
International Conference on Control, Automation and Systems (ICCAS),
2021, pp. 852-856.

[22] D. Coleman, I. Sucan, S. Chitta, N. Correll. “Reducing the barrier to entry
of complex robotic software: a MoveIt! case study”, Journal of Software
Engineering for Robotics, vol. 5, no. 1, pp. 3-16, May 2014.

[23] IA. Sucan, M. Moll, LE. Kavraki, “The open motion planning library,”
IEEE Robotics & Automation Magazine, vol. 19, no.4, pp. 72-82, Dec.
2012.

[24] M. Jaderberg, K. Simonyan, A. Zisserman. "Spatial transformer
networks,”, Advances in neural information processing systems, vol.28,
2015.

[25] EW. Weisstein, “Affine transformation,”, from MathWorld--A
Wolfram Web Resource, URL: https://mathworld.wolfram.com/AffineT
ransformation.html.

[26] G. Balakrishnan, A. Zhao, M. R. Sabuncu, A. V. Dalca and J. Guttag, “An
unsupervised learning model for deformable medical image registration,”
in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 9252-9260.

[27] E. Rohmer, SPN. Singh, and M. Freese, “CoppeliaSim (formerly V-REP):
a Versatile and Scalable Robot Simulation Framework (PDF),” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2013, pp. 1321–1326.

1689

