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Abstract—Although reinforcement learning has shown 
promise in solving industrial assembly tasks, it still faces 
challenges such as poor sample efficiency and sparse rewards that 
limit its learning capability. To address these challenges, we split 
multi-step assembly tasks into modular sub-tasks and use CAD-
based prior knowledge to facilitate sub-task learning. The 
geometric information from the knowledge extraction module 
accelerates the learning of grasping and placing. Instead of 
considering multiple possible placement errors in a jig-free 
environment during training, which would significantly increase 
training time, our method uses a compensation module with a 
spatial transformer network to deal with errors. We evaluated our 
method on two 3D-printed models with different materials and 
achieved a completion success rate of 96% for the plastic model 
and 94% for the metal model. Our results indicate that our model 
can be robustly applied to products with similar geometry without 
requiring additional model updates.  

Keywords—Industrial Assembly, Robotic Manipulation, 
Reinforcement Learning  

I. INTRODUCTION 
Industrial robotic assembly remains a challenging problem, 

as it involves multi-step tasks that require high precision. With 
the shift towards more flexible and dynamic manufacturing 
environments, where expensive jigs and fixtures are no longer 
used for accommodating various product types, finding effective 
solutions has become even more important [1]. Deep 
reinforcement learning methods have been applied to solve 
robotic manipulation tasks, such as industrial insertion, due to 
their flexibility and adaptability [2, 3, 4, 5]. However, an end-to-
end reinforcement learning approach with sparse rewards has 
limitations in solving multi-step tasks as it often wanders in large 
state-action spaces, performing mostly unsuccessful actions. 
Some recent studies have attempted to use imitation learning [6, 
7, 8] to address the issue of sparse rewards, as it provides 
guidance for robots to take correct actions. Although these 
studies have shown successful results in various insertion tasks, 
they rely on expert demonstrations, which may not be feasible 
in an industrial manufacturing setting. Meta-reinforcement 
learning is another approach to solving multiple insertion tasks 
by learning common knowledge across different but similar 

types of tasks and adapting to new tasks with a small amount of 
data [5, 9]. However, this method has barriers to being applied 
in a manufacturing system, as assembly of industrial products is 
performed sequentially, meaning that tasks change over time. It 
is impractical to have an adaptation phase every time a new task 
is given in the middle of the assembly process. 

Most studies on insertion tasks have been based on contact-
rich manipulation [7, 8, 10, 11, 12] using force sensors, which 
requires one part to be fixed so that proper actions can be learned 
from the interactions between the parts. As we aim to target a 
manufacturing environment without jigs or fixtures, where parts 
can move in the XY-plane during insertion, we adopt a vision-
based system, which is more capable of handling relatively large 
placement errors. We only use a single camera mounted on the 
robot arm, which is a simple and cost-effective configuration. 

In this work, we propose a data-efficient method for multi-
step industrial assembly using knowledge-based reinforcement 
learning. Our model, aiming to complete assembly tasks for a 
finished product, consists of distinct modules rather than an end-
to-end solution. Utilizing the step design file common in 
industry, we developed an analyzer to extract knowledge about 
product structures and assembly tasks, reducing training time for 
skills like grasping and placing. The grasping and placing 
models were trained in simulation under standard conditions, 
ignoring placement errors, with a separate compensation module 
for unexpected errors. Our method, tested on two 3D-printed 
product models of different materials, achieved a 96% success 
rate with plastics and 94% with metal, without further adaptation. 

II. RELATED WORKS 
CAD-based knowledge is proven effective in robotic 

assembly tasks. In [13], the CAD file was used to create a motion 
plan guiding reinforcement learning. [14] used the CAD file for 
instruction generation, perception, and planning. In [15], CAD 
data-derived component poses combined with compliance 
control adapted quickly to new assembly tasks. Similarly, our 
method leverages knowledge from a standard CAD file (STEP 
file) to enhance reinforcement learning for manipulation skill 
acquisition. 

1684979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023



Numerous studies have explored robotic grasping with 
reinforcement learning. QT-Opt [16] developed a system 
learning grasping from extensive real robot data, though its 
hardware and computational resources are not broadly 
applicable. Conversely, [17] proposed a simulated grasping 
benchmark using off-policy learning, highlighting deep Q-
learning's superiority in low data scenarios. VPG [18] improved 
grasping in cluttered environments using deep Q-learning and 
pushing. However, most models overlook grasping quality, 
often dropping objects into bins. We adopt VPG for our grasping 
model, modifying environmental configurations and design, 
such as the reward function, to emphasize quality. Our placing 
model shares the grasping model's architecture but alters the 
exploration strategy with an action prior based on heightmap, 
akin to [19], without replacing the temporal difference target to 
prevent fade-out during training. 

III. METHODS 
To make the assembly task more manageable, we break it 

down into modular sub-tasks instead of relying solely on 
reinforcement learning. Furthermore, we integrate the 
knowledge derived from the 3D product STEP file to streamline 
RL training by minimizing learning parameters and enhancing 
sample efficiency. Our system consists of six modules, as shown 
in Fig. 1: a knowledge extraction module, a task planning 
module, a motion planning module, a grasping module, a 
placing module, and a compensation module. 

A. Knowledge Extraction Module 
Industrial products use the STEP (Standard for the Exchange 

of Product Data) file for 3D product modeling [20]. We extract 
product structures and assembly descriptions from STEP using 
a part analyzer from [21]. The extraction involves several steps. 
Initially, the STEP analyzer reorganizes product details into a 
database using a regular expression library. The part analyzer 
then extracts all parts, analyzing their edges to compute 
min/max values in 3D space, determining size and position. 
Considering only stack-structured industrial products, the 
assembly analyzer sequences parts by their bottom line height, 
starting with the lowest. Parts are paired by their sequence, and 

the assembly analyzer identifies joint types like peg-in-hole or 
snap-fit in the final analysis step. 

The analyzers' data is vital for various modules. For example, 
the part analyzer's height data aids the grasping module in 
reducing the action space dimension of the reinforcement 
learning-based grasping model, accelerating training. The part 
position, also from the part analyzer, informs the placing 
module's reward function. This reward is calculated based on 
successful part joining, with the final part position indicating 
success. The task planning module assigns tasks for each step, 
relying on assembly sequences and joint types from the task 
analyzer to execute the assembly task. 

B. Task/Motion Planning Module 
The task planning module oversees the system, accessing 

data on part size, position, initial location, and assembly 
sequence to determine tasks. It assigns basic actions like 
reaching, grasping, placing, and inserting, each characterized by 
the gripper's 6D pose. For the reach action, the wrist camera 
centers on the workspace for a top-view depth image of the 
target part. The grasp and place actions use the gripper's pose 
from respective modules, while the insert action is a vertical 
movement from the place position. Joint types are sequences of 
basic actions: reach, grasp, place, and insert. The force during 
the insert action differentiates peg-in-hole (no force, loose 
coupling) from snap-fit (force for tight joining). The motion 
planning module, using the Moveit library [22] based on OMPL 
algorithms [23], manages the robot arm and gripper, including 
path planning and gripper actions. Grasp success is gauged by 
the gripper fingers' distance, with success under a specific 
threshold. 

C. Grasping Module 
The grasping model is based on vision-based reinforcement 

learning, where the z-axis of the grasping pose can be 
determined by the part size extracted from the part analyzer. 
Thus, we assume that planar motion and rotation around the z-
axis of the gripper are sufficient to complete the task, and reduce 
the dimension of the action space from 6D to 3D, defined by 
(x, y, 𝜑𝜑𝜑. This reduction saves a significant amount of training 

Fig. 1. System overview: The system is composed of modular sub-tasks that interact with each other. Each module is responsible for a specific task, including 
knowledge extraction, task planning, motion planning, grasping, placing, and error compensation. 
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time and increases the chance of successful training. We modify 
the grasping model from VPG [18], as depicted in Fig. 2, by 
incorporating reward shaping and using only the depth image as 
input. Additionally, instead of using a fixed global camera to 
cover the entire workspace and randomly grasping objects, we 
mount the wrist camera on the robot arm and move it to the 
target assembly part assigned by the task planner to obtain the 
depth image. Since the grasping model is trained separately from 
the placing model, the placing model does not receive any 
feedback on the grasp pose. Therefore, the gripper must grasp 
the part stably, with no shifting or tilting allowed. We define the 
reward function as (1), which values grasping with minimal 
distance between the gripper's position and the part's center 
position in x and y coordinates. 
𝑹𝑹𝑹𝑹𝑹𝒕𝒕, 𝒂𝒂𝒕𝒕) =

�

𝟏𝟏
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏gripper,(𝒙𝒙𝒄𝒄,𝒚𝒚𝒄𝒄)part)

, if 𝟏𝟏
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏gripper,(𝒙𝒙𝒄𝒄,𝒚𝒚𝒄𝒄)part)

> 𝜺𝜺𝒕𝒕𝒕𝒕 
𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎otherwise        

(1) 

D. Placing Model 
The place action is the primary action that must be 

performed before insertion. Since insertion, which is the 
fundamental action for peg-in-hole and snap-fit, is defined as a 
top-down movement from the placing pose, it is crucial to 
estimate the precise placing pose in order to successfully 
complete the assembly task. The placing model has the same 
architecture as the grasping model, as it infers the best placing 
pose (x, y, 𝜑𝜑𝜑 from the depth heightmap of the target part, except 
that the reward function and exploration strategy are defined 
differently. Since each part position of the completed product is 
known and extracted from the part analyzer, the success or 
failure of the assembly can be determined based on whether the 
x and y positions of two parts match and the height of the part 
coincides with the one from the analyzer. If the grasped part A 
is successfully placed and inserted into part B, the reward 
function is formulated as follows:  
𝑅𝑅𝑅𝑅𝑅𝑡𝑡, 𝑎𝑎𝑡𝑡) = 

�
1, if �𝑥𝑥part A − 𝑥𝑥part B� < 𝜀𝜀𝑡𝑡𝑡, �𝑦𝑦part A − 𝑦𝑦part B� < 𝜀𝜀𝑡𝑡𝑡, �𝑧𝑧part A − 𝑧𝑧height A� < 𝜀𝜀𝑡𝑡𝑡 
0,                                                                                                otherwise        

 (2)  

The state of the model is represented by the heightmap image, 
which provides information about the area where the part exists. 
As exploring empty areas is a waste of time, this insight can be 
reflected in the action prior defined as (3). 

𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝑡𝑡, 𝑎𝑎𝑡𝑡) = �
1,     if  𝑠𝑠𝑡𝑡 > 0
0,   otherwise                           (3) 

The action prior is applied to the Q-map and limits the action 
space by incorporating it into the action selection process. The 
modified action selection process, which leads to an 
improvement in sample efficiency, can be represented as: 

                          𝑎𝑎𝑡𝑡 = max
𝑎𝑎𝑡𝑡

𝑄𝑄𝑄𝑄𝑄𝑡𝑡, 𝑎𝑎𝑡𝑡) 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝑡𝑡, 𝑎𝑎𝑡𝑡)                         (4) 

E. Placement Error Compensation 
In a jig-free environment, the assembly parts can move in the 

x-y directions while being inserted into the target part. This 
movement can cause errors and potentially lead to assembly 
failure, as our placing model is trained under the assumption that 
the target part is always located at the center of the workspace. 
Therefore, if the target part is shifted in the x or y-axis, the 
performance of the placing model may degrade, resulting in a 
failure of the assembly process.  

To address this issue, we incorporate a compensation 
module using a spatial transformer network [24], which learns 
the affine transformation of the input image. The affine 
transformation is a linear transformation that includes 
translation, scaling, rotation, shears, and their combinations, 
preserving points, lines, and planes [25]. The spatial transformer 
network is originally designed for learning models that are 
geometrically invariant to diversely transformed images, 
facilitating tasks such as image classification and localization 
[24]. We use this network to learn how much the input image is 
transformed from the reference image in an unsupervised 
manner by reconstructing the target reference image. This 
approach is similar to the work in [26], but we do not apply the 
reference image to the network. Instead, we only use it for 
computing loss during the training. Fig. 3 illustrates the 
architecture of the spatial transformer network applied to our 
product model. The localization network takes the transformed 
input image and produces a 2x3 parameter matrix related to 
scaling, rotation, and translation. The grid generator transforms 
the regular grid over the output image to the sampling grid. The 
sampler produces the transformed output image by applying the 
sampling grid to the input image. Instead of computing the loss 
from the label like image classification, we use the mean squared 
error between the reference image and the output image as the 
loss for training. Thus, the loss function is given by: 

Loss = 
1
𝐾𝐾
��

1
𝑁𝑁

1
𝑀𝑀
���IRef(𝑖𝑖𝑖 𝑖𝑖) − ITrans(𝑖𝑖𝑖 𝑖𝑖)�2

𝑀𝑀

𝑗𝑗𝑗𝑗

𝑁𝑁

𝑖𝑖𝑖𝑖

�     (5)
𝐾𝐾

𝑘𝑘𝑘𝑘

 

Fig. 3. Placement error compensation using STN. 

Fig. 2. The architecture of the grasping and placing model based on deep-
Q learning. 
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Here, 𝐾𝐾  denotes the batch size of input images, and 𝑁𝑁 , 𝑀𝑀  are 
the width and height of the image, respectively. In our product 
model, IRef represents the image of the target part located at the 
center of the workspace, which is used during the training of the 
placing model. The learned placing pose can then be 
compensated with the parameters estimated from the spatial 
transformer network to perform the insert action properly. The 
transformation parameters can be expressed as a 2x3 matrix: 

�
𝜃𝜃11 𝜃𝜃12 𝜃𝜃13
𝜃𝜃21 𝜃𝜃22 𝜃𝜃23� = �

 s ·cos ∆𝜑𝜑 -s ·sin ∆𝜑𝜑 𝜑𝜑𝜑
s ·sin ∆𝜑𝜑  s ·cos ∆𝜑𝜑 𝜑𝜑𝜑�   (6) 

where the scaling factor is given by 𝑠𝑠 𝑠 √𝜃𝜃11
2 + 𝜃𝜃12

2, the rotation 
angle ∆𝜑𝜑 is computed as ∆𝜑𝜑 𝜑 𝜑𝜑𝜑−1

�− 𝜃𝜃12
𝜃𝜃11�

, and the translation 
values in the x and y directions are denoted by ∆𝑥𝑥 and ∆𝑦𝑦, 
respectively. Using these parameters, we can compute the 
compensated placing pose as follows: 

�𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� = (𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝑥𝑥𝑥𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝑦𝑦𝑦𝑦𝑦 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + ∆𝜑𝜑𝜑          (7) 

IV. EXPERIMENTS 

A.  Experimental Setup 

Fig. 4 illustrates the experimental setup and the test objects 
used in our real-world experiments. The multi-step assembly 
task was performed using a UR5 robot arm equipped with a 
Robotiq 2F-85 gripper. To capture the depth image of the target 
part, we mounted a RealSense L515 camera on the robot wrist. 
We evaluated our method using two 3D-printed product models 
made of different materials, namely plastics and metal. This 
allowed us to assess the generalization capability of our 
assembly model to similar types of products without requiring 
additional adaptation.  

B.  Knowledge Extraction Using Product Analyzer 
To generate knowledge about the test product, we used the 

product analyzer, which comprises step, part, and task analyzers. 
Fig. 5 displays the extracted information about the parts 
composing the test product from the test product step file. The 
product's structure describes the list of joints and parts 
comprising each joint. The test product has four joints where 
each joint is composed of a pair of parts, except that the first 
joint is just a single part. The size of each part is expressed in 

Cartesian coordinates. The extracted locations of the parts 
indicate the part position (x, y, z) when the assembly is 
successfully completed. The task analyzer analyzes the 
assembly sequences, which are also shown in Fig. 5. Each step 
is specified with the parts required for conducting the task and 
the necessary joint type. The test product requires four steps to 
finish the tasks. At the first step, the bottom is picked and placed 
at the center of the workspace. Then, the shaft is snap-fitted to 
the bottom. Next, the peg-in-hole between the spring and shaft 
is performed. At the last step, the top is snap-fitted to the shaft.  

C.  Training in Simulation 
Grasping Model: The grasping model was trained in a 

simulated CoppeliaSim environment [27]. The product's 3D 
CAD file was converted to an STL format for CoppeliaSim. 
Each part was assumed to have a fixed position, depicted in Fig. 
4. In each training episode, the wrist camera approached the 
target part, capturing a 224x224 pixel cropped depth image. This 
image was transformed into a heightmap and input into the 
grasping network to determine the most stable grasp pose. The 
reward function, given by (1), gauged the grasp quality, with the 
model learning the most stable grasps without compromising 
placing performance. Fig. 6 displays the grasping test results, 
showing all parts centrally grasped, the optimal position. Given 
the cylindrical nature of all parts, grasp rotation didn't impact 
performance. 

Placing Model: The training of the placing model was also 
conducted in simulation, assuming a stably grasped part and a 
centrally positioned target part, with no target part movement 
considered. In each episode, the wrist camera's depth image of 
the target part is converted into a heightmap. The placing model 
learns the pose for successful part mating, performing random 
tasks from the assembly sequences in each episode, as depicted 
in Fig. 7. Along with the inserting action, the model learns three 
different assembly types. After convergence, successful placing 
and joining of parts occur, as shown in Fig. 7. The learning curve 
in Fig. 8 illustrates the assembly success rate over training, with 
the action prior defined in (3) accelerating learning compared to 

Fig. 5. Knowledge extraction: part analyzer(left) and the task analyzer 

Fig. 4. Real-world experiment setup (upper) and test products (lower). Fig. 6. Grasping test results in simulation 
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without it. Training was also attempted with target part 
movement in the x-y axis during insertion for a jig-free 
environment, but the model failed to learn the placing pose even 
after extended training. The high precision required for 
assembly makes finding a solution in random settings highly 
challenging. 

Compensation Model: The compensation model employs a 
spatial transformer network to learn translations and rotations 
compensating for target part spatial transformations. For 
training, 60,000 transformed images were generated from three 
reference images used in the placing model training. These 
images were top-down views of centered target parts. Scaling 
ranged from 0.5 to 1.2 in 0.1 increments, translation from -5 cm 
to 5 cm in 1 cm steps, and rotation from 0° to 360° in 45° steps. 
The model was assessed with 5,000 transformed images. Table 
1 displays the root mean squared error of estimated parameters, 
excluding rotation due to cylindrical part shapes. The average 
translation error was under one pixel, suggesting accurate 
placing pose compensation. Fig. 9 presents test results from 24 
images, confirming the model's precise spatial parameter 
learning and its ability to match input images to reference 
images. 

 
 

TABLE I.  RESULTS OF COMPENSATION MODEL EVALUATION 

Transformation Parameters  RMSE 

Scaling 0.0149 

Translation 
∆𝑥𝑥 0.6722 

∆𝑦𝑦 0.6061 

D.  Real-World Results 
We tested our system in a real-world setting, depicted in Fig. 

10, with the setup detailed in section A. Aiming to successfully 
complete a multi-step assembly for a finished product, we 
evaluated grasping, placing, and overall completion. We 
examined two product models with similar structures but 
slightly different sizes, shapes, and materials (plastics and metal). 
Across 100 trials (50 for each product), we intentionally 
displaced the target part up to 5 cm from the center in 80% of 
trials to induce placement errors. The results in Table 2 revealed 
a high assembly accuracy of 96% for plastics and 94% for metal. 
Failures stemmed from unstable grasping, where the estimated 
grasp pose deviated from the part's center. We concluded that 
further training was unnecessary for products with similar 
shapes and sizes. 

 

TABLE II.  ASSEMBLY TASK SUCCESS RATE (%) 

Success Rate  
(%) 

Product Material 

Plastics Metal 

Grasping 

Bottom 100 100 

Shaft 96 (48/50) 94 (47/50) 

Spring 100 100 

Top 100 100 

Placing  
& 

Inserting 

Bottom-Shaft 100 100 

Shaft-Spring 100 100 

Spring-Top 100 100 

Completion 96 94 

Fig. 10. Multi-step assembly execution using UR5 with two products. 

Fig. 7. Training the placing model in simulation 

Fig. 9. The results of spatial transformer network. 
 

Fig. 8. Learning curve for the placing model. The model using the action prior 
learns faster. Training fails under the random setting. 
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V. DISCUSSION AND FUTURE WORK 
We present a method for tackling multi-step industrial 

assembly tasks using knowledge-based reinforcement learning, 
which successfully completed the tasks with a high accuracy of 
96%. For future work, we aim to examine this method on various 
product types with more complex structures and shapes. 
Additionally, we plan to consider a more flexible environment 
where parts are randomly placed on a workspace or stacked in 
bins, as seen in real manufacturing settings. This will require a 
perception module capable of identifying each part's ID and 
estimating its position, allowing the task planner to assign 
appropriate parts for grasping and placing. Furthermore, we will 
study the vision-based decision module to determine the success 
or failure of the assembly at each step. 
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