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Abstract—The rapid progress of science and technology, cou-
pled with the integration of artificial intelligence, is driving
transformative shifts within the manufacturing sector. Notably,
artificial intelligence is playing a pivotal role in revolutionizing
semiconductor manufacturing. The recent focus has been on
artificial intelligence (AI)-driven methods for managing semi-
conductor defects. We aimed to perform a comprehensive bib-
liometric analysis, spotlighting trends in AI research within
the semiconductor domain, particularly concerning defects. We
gathered pertinent publications from Scopus and Web of Sci-
ence databases, meticulously examining their distributions. Our
findings encompass a total of 808 papers published between 2019
and 2023. Over this five-year span, publications exhibit consistent
growth, with Proceedings of SPIE and IEEE Transactions on
Semiconductor Manufacturing emerging as the most prolific
sources as per Scopus and Web of Science data. Additionally, we
scrutinized influential research approaches and data resources
outlined in top-tier publications. The study underscores the
persistent expansion of this research realm and outlines three
principal insights and three extant limitations associated with
employing AI for semiconductor defect control.

Index Terms—bibliometric analysis, artificial intelligence, de-
fects, semiconductor

I. INTRODUCTION

The progress of Artificial Intelligence (AI) yields varied
impacts on contemporary society, inducing substantial alter-
ations across multiple facets of life and social frameworks. Its
influence spans diverse domains, including healthcare and life
sciences, autonomous driving, natural language processing, AI
assistants, as well as security and cyber safety [1].

AI has already outperformed humans in specific domains,
and forecasts suggest that automation will encompass approxi-
mately 50% of tasks within the next four decades, progressing
towards nearly complete automation in around 120 years [2]–
[4]. Within this context, AI assumes a pivotal position within
the semiconductor industry. The substantial data influx from
semiconductor manufacturing and research necessitates the
application of data science techniques for efficient processing
and analysis. Moreover, maintaining a competitive advan-
tage hinges on effective yield management, which places
paramount importance on the identification and mitigation
of elements like defects and faults. Consequently, numerous
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researchers have delved into an array of AI methodologies to
diminish and control semiconductor defects.

Aligned with this trend, we aim to conduct an exhaustive
bibliometric analysis that highlights the prevailing trends in AI
research within the semiconductor sphere, with a specific focus
on defects. Section 2 outlines the methodologies employed in
this study. The outcomes are delineated in Section 3, while
Section 4 concludes with a comprehensive discussion.

II. ANALYSIS METHODS

We gathered data from two prominent citation databases:
Scopus and Web of Science. Scopus, an expansive biblio-
graphic repository, encompasses an array of academic fields.
Web of Science, on the other hand, presents top-tier academic
material spanning a gamut of subjects, spanning from natural
and social sciences to arts and humanities. Pertinent publica-
tions, integral to our study, were extracted based on search
query terms present within their titles or abstracts. Papers not
authored in English or categorized as different document types
were excluded. The dataset was restricted to the most recent
five years (2019 to August 2, 2023; Figure 1) [5].

Fig. 1. Representative data collection procedure

Hence, a cumulative count of 808 papers, published within
the timeframe of 2019 to August 2, 2023, was amassed. To
encapsulate the swiftly evolving landscape of AI research,
we also incorporated the ongoing year, 2023, which remains
receptive to emergent advancements. The exhaustive compila-
tion of encompassed publications can be found in Multimedia
Appendix 1.
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A bibliometric analysis entails delving into the distribu-
tion of publications, research themes, geographical origins,
and citation counts. Statistical evaluations of the collected
papers were executed through a combination of the Python
programming language and Microsoft Excel [6]. Our initial
scrutiny encompassed the dissemination of publications across
diverse categories, encompassing years, countries, institutions,
sources, authors, and research themes. Furthermore, we un-
dertook a network analysis of frequently employed keywords.
In addition, to pinpoint the dominant research trajectories
within this domain, we conducted trend review analyses. These
analyses focused on highly cited papers that encapsulated the
subsequent areas: (i) AI techniques, (ii) Semiconductor, and
(iii) Defects and failures.

III. RESULTS

A. Publication Distribution Analysis

1) Overall Publication Trend: Table I illustrates the ongo-
ing expansion of publications from 2019 to 2023 (until August
2nd). In 2019, a cumulative of 54 papers were procured from
Scopus, while an additional 46 papers were sourced from
Web of Science. Notably, there was a pronounced surge in
publication count in 2023, yielding 86 papers from Scopus
and 51 from Web of Science. Given the data retrieval date
(August 2nd, 2023), it’s foreseeable that further papers will
be accumulated during the remainder of 2023, emphasizing
the sustained surge in scholarly interest across the domains of
AI, Semiconductor, and Defects.

Year Publication count, n(%)
Scopus (N=453) Web of Science (N=355)

2019 54 (11.92) 46 (12.96)
2020 72 (15.89) 63 (17.75)
2021 95 (20.97) 75 (21.13)
2022 146 (32.23) 120 (33.8)
2023 86 (18.98) 51 (14.37)

TABLE I
NUMBER OF PUBLICATIONS PER YEAR.

2) Predominant Countries: More than 30 countries
emerged as leading contributors in research within this field
on both Scopus (n=42) and Web of Science (n=38). Table
II presents the countries with the highest publication output.
China secured the top spot in both databases, followed by the
United States and South Korea.

Scopus (N=453) Web of Science (N=233)
Rank Country Count, n(%) Rank Country Count, n(%)

1 China 106 (23.4) 1 China 85 (23.94)
2 United States 65 (14.35) 2 United States 54 (15.21)
3 South Korea 58 (12.8) 3 South Korea 50 (14.08)
4 Taiwan 31 (6.84) 4 Taiwan 29 (8.17)
5 India 21 (4.64) 5 Germany 16 (4.51)
5 Japan 21 (4.64) 5 Japan 16 (4.51)
7 Germany 20 (4.42) 7 India 14 (3.94)
8 Singapore 18 (3.97) 8 Singapore 12 (3.38)
9 France 10 (2.21) 9 France 10 (2.82)
9 Italy 10 (2.21) 10 Italy 7 (1.97)

TABLE II
TOP PRODUCTIVE COUNTRIES.

3) Productive Institutions: A total of 633 distinct institu-
tions were associated with the 808 publications. The predom-
inant institutions are detailed in Table III. Significantly, the
Chinese Academy of Sciences in China garners attention as
the most prolific entity, significantly contributing across both
databases, with 22 publications in Scopus and 36 publications
in Web of Science.

Institution Publication count, n(%)
Scopus Web of Science

(N=453) (N=355)
Chinese Academy of Sciences 22 (3.28) 36 (3.98)
Tongji University 10 (1.49) 9 (0.99)
Universidad de Castilla-La Mancha 10 (1.49) 13 (1.44)
Sungkyunkwan University 9 (1.34) 16 (1.77)
National Tsing Hua University 8 (1.19) 10 (1.1)
Chungbuk National University 8 (1.19) 8 (0.88)
Zhejiang University 8 (1.19) 10 (1.1)
Beijing University of Technology 7 (1.04) 7 (0.77)
Korea University 7 (1.04) 9 (0.99)
Samsung 7 (1.04) 21 (2.32)
Argonne National Laboratory 6 (0.89) 8 (0.88)
National Cheng Kung University 6 (0.89) 10 (1.1)
RMIT University 6 (0.89) 5 (0.55)
Tianjin University 6 (0.89) 6 (0.66)
Wuhan University 5 (0.75) 4 (0.44)
Engineering Research Center 5 (0.75) -of Digital Community
Myongji University 5 (0.75) 5 (0.55)
University of Southern California 5 (0.75) 4 (0.44)
Jiangsu University 5 (0.75) 5 (0.55)
National Taipei University of Technology 5 (0.75) 5 (0.55)

TABLE III
TOP PRODUCTIVE INSTITUTIONS.

4) Productive Publication Sources: We encompassed di-
verse document types, encompassing not solely journal articles
but also conference proceedings and book chapters. Table
IV and Table V depict sources of publications that exhibit
noteworthy tallies within Scopus and Web of Science, respec-
tively. Among these sources, Proceedings of SPIE emerged as
the most prolific in Scopus, boasting 33 publications, trailed
by IEEE Transactions on Semiconductor Manufacturing and
IEEE Access. Conversely, in Web of Science, IEEE Transac-
tions on Semiconductor Manufacturing garnered recognition as
the most prolific source, presenting 29 publications, followed
by IEEE Access and Applied Sciences-Basel.

5) Predominant Authors: Table VI presents the top 10
researchers whose contributions significantly impact the field,
arranged in descending order of their publication counts.
Among these distinguished researchers, four maintain affil-
iations with esteemed institutions in Spain, while three are
associated with prominent organizations in China, and one
is affiliated with institutions in South Korea, Belgium, and
Singapore. Additionally, a researcher hails from a renowned
establishment in South Korea. Kang Seokho, affiliated with
Sungkyunkwan University, stands out as the most prolific
contributor, boasting seven publications. Equally noteworthy
are Yu Naigong and Xu Qiao from Beijing University of
Technology, as well as Yu Jianbo from Tongji University, each
boasting commendable publication records.
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Rank Source Publication count, n (%)
1 Proceedings of SPIE - The International Society for Optical Engineering 33 (7.28)
2 IEEE Transactions on Semiconductor Manufacturing 31 (6.84)
3 ASMC (Advanced Semiconductor Manufacturing Conference) Proceedings 13 (2.87)
4 IEEE Access 12 (2.65)
5 Applied Sciences (Switzerland) 9 (1.99)
6 Computers and Industrial Engineering 8 (1.77)
6 Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits 8 (1.77)
8 Expert Systems with Applications 6 (1.32)
8 Journal of Intelligent Manufacturing 6 (1.32)

10 Proceedings - Electronic Components and Technology Conference 4 (0.88)
TABLE IV

TOP PUBLICATION SOURCES IN SCOPUS (N=453).

Rank Source and publication count, n (%)
1 IEEE Transactions on Semiconductor Manufacturing, 29 (8.17)
2 IEEE Access, 12 (3.38)
3 Applied Sciences-Basel, 9 (2.54)
4 Journal of Intelligent Manufacturing, 7 (1.97)
4 Metrology, Inspection, and Process Control XXXVII, 7 (1.97)
6 Computers and Industrial Engineering, 6 (1.69)
7 Metrology, Inspection, and Process Control for Microlithography

XXXVII, 5 (1.41)
8 Expert Systems with Applications, 4 (1.13)
8 Scientific Reports, 4 (1.13)
8 Annual Semi Advanced Semiconductor Manufacturing Confer-

ence (ASMC), 4 (1.13)
TABLE V

TOP PUBLICATION SOURCES IN WEB OF SCIENCE (N=355).

6) Productive Research Subjects: The top 10 research
subjects of each citation database are given in Figure 2.
Noteworthy is the prominence of Engineering as the primary
research subject in both databases, encompassing 317 pub-
lications (28.9%) in Scopus and 210 publications (30.0%)
in Web of Science. Within Scopus, Materials Science (200,
18.3%), Computer Science (198, 18.1%), and Physics and
Astronomy (142, 12.9%) each exceeded the 10% threshold
of total publications. Similarly, in Web of Science, Computer
Science (95, 13.6%), Physics (88, 12.6%), and Materials
Science (79, 11.3%) accounted for more than 10% of the total
publications.

7) Keyword Co-occurrence: We conducted an in-depth
investigation into the keywords provided by authors and index-
ing sources, complementing our analysis of research subjects.
Author keywords encompass terms specifically selected by
paper authors, while Index keywords are meticulously curated
to accurately encapsulate paper content and characteristics.
For visual representation, we harnessed a network graph, a
widely employed bibliometric approach (Figure 3). Here, each
node corresponds to a keyword, and an edge connecting nodes
signifies co-occurrence within the same paper. To enhance
precision, edges with less than 3 co-occurrences were fil-
tered out. High-frequency keywords, such as semiconductor
manufacturing, defects, silicon wafers, convolutional neural
networks, and deep learning, underscore prevalent research
domains. These keywords exhibit degrees of 16 or higher.
Notably, keywords linked to artificial intelligence techniques
encompass convolutional neural network, deep learning, ma-

chine learning, classification, pattern recognition, and image
enhancement. This signals a pronounced curiosity in the
implementation of artificial intelligence in the field. In the
context of semiconductor-related keywords, notable terms en-
compass silicon wafers, wafer map, and semiconductor wafer,
underscoring a research focus primarily centered around the
wafer level.

B. Overview of Highly Cited Publications

1) Publication Citation Quantities: Table VII shows the
yearly citation counts. In addition to the distribution of publi-
cations, a noteworthy pattern emerges. In Scopus, the annual
citation count has demonstrated a decline since 2019. In
contrast, within Web of Science, the annual citation count has
exhibited a consistent rise since 2019. As of August 2, 2023,
Scopus has documented slightly over 20 annual citations,
whereas Web of Science has amassed an impressive tally
exceeding 2000 annual citations.

2) Comprehensive Analysis of Highly Cited Papers: A
meticulous scrutiny and assessment of the ten most highly
cited papers was carried out to unravel comprehensive research
methodologies. Out of these, a filtering procedure was applied
to pinpoint those that specifically addressed the ensuing ar-
eas: (i) Artificial Intelligence techniques, (ii) Semiconductor
domain, and (iii) Defects and Failures. As a result of this
process, we identified five papers that impeccably aligned with
these criteria, and their details are documented in Table VIII.

Cheon et al. [7] introduced an automatic defect classification
(ADC) technique grounded in deep learning principles. This
approach proficiently categorizes diverse forms of surface
damage on wafers. The analysis encompassed a comprehensive
dataset, comprising 2,123 images within the Dataset-TT (Train
& Test) category, and an additional 30 images in the Dataset-
UN (Unknown) defect class. The Convolutional Neural Net-
work (CNN) algorithm was harnessed to process these images.
The Dataset-TT consisted of 2,123 images categorized into
five distinct defect classes. Impressively, the classification
outcomes illustrated a remarkable accuracy of 96.0%.

Saqlain et al. [8] proposed a soft voting ensemble (SVE)
classifier equipped with multi-type features, specifically for the
identification of defect patterns within wafer maps. The anal-
ysis employed the WM-811K dataset, encompassing 811,457
wafer maps originating from 46,293 lots. Three distinct types

1692



Author Institution Country
Publication count, n(%)

Scopus Web of Science
(N=453) (N=355)

Kang, Seokho Sungkyunkwan University South Korea 7 (1.55) 6 (1.69)
Yu, Nai-gong Beijing University of Technology China 7 (1.55) 5 (1.41)
Xu, Qiao Beijing University of Technology China 7 (1.55) 5 (1.41)
Yu, Jianbo Tongji University China 7 (1.55) 7 (1.97)
Halder, Sandip Inter-university MicroElectronics Centre Belgium 6 (1.32) 5 (1.41)
Pahwa, Ramanpreet Singh Institute for Infocomm Research Singapore 6 (1.32) 2 (0.56)
López de la Rosa Francisco, Universidad de Castilla-La Mancha Spain 5 (1.1) 3 (0.85)
Gómez-Sirvent, José L. Universidad de Castilla-La Mancha Spain 5 (1.1) 5 (1.41)
Morales, Rafael Universidad de Castilla-La Mancha Spain 5 (1.1) 5 (1.41)
Fernández-Caballero, Antonio Universidad de Castilla-La Mancha Spain 5 (1.1) 5 (1.41)

TABLE VI
TOP 10 PRODUCTIVE AUTHORS.

Fig. 2. Publication count of top 10 research subjects.

Year Citation count, n
Scopus Web of Science

2019 1027 1343
2020 968 1944
2021 651 2455
2022 441 4424
2023 27 2122

TABLE VII
NUMBER OF CITATIONS PER YEAR.

of features were extracted: density-based, geometry-based, and
radon-based. The study encompassed four machine learning
classifiers: logistic regression (LR), random forests (RFs), gra-
dient boosting machine (GBM), and artificial neural network
(ANN). The assessment of classification outcomes included
a range of performance metrics such as accuracy, precision,
recall, F1 Score, and AUC score, achieving values of 95.9%,
96.9%, 96.9%, 96.7%, and 99.9%, respectively.

Wang et al. [9] presented an innovative deep learning
framework termed as the adaptive balancing generative ad-
versarial network (AdaBalGAN), specifically designed for
recognizing defective patterns (DPR) within wafer maps char-

acterized by imbalanced data. In this endeavor, the WM-
811K dataset was harnessed, and three distinct feature sets
were extracted: density-based, geometry-based, and radon-
based features. Through experimentation, it was evident that
the AdaBalGAN model, as proposed, surpassed conventional
models, showcasing superior performance with an accuracy
rate of 96%.

Nakazawa et al. [10]introduced deep convolutional encoder-
decoder neural network architectures, specifically SegNet, U-
Net, and FCN, as a means to detect and segment abnormal
defect patterns within wafer maps. Their dataset encompassed
17,000 samples derived from 1,191 wafers. To augment the
training process, synthetic wafer maps were generated for
eight foundational defect patterns. Notably, the study demon-
strated the model’s capacity to detect hitherto unseen patterns
exclusively through synthetic wafer maps. The experimental
outcomes underscored remarkable levels of accuracy, with U-
Net, SegNet, and FCN achieving impressive values of 98%,
99%, and 97%, respectively.

Saqlain et al. [11] proposed a deep learning-based ap-
proach, specifically a convolutional neural network, named
CNN-WDI, tailored for the automatic identification of wafer
defects. The WM-811K dataset was employed, and three
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Year Authors Defects Datasets Algorithm Features Output Results
2019 Sejune Wafer surface 2,123 Dataset-TT CNN1 Pixel of Related to Accuracy 0.96

Cheon defects images, 30 160×160 image wafer surface
et al. [7] Dataset-UN defect defects

images by
scanning electron
microscope

2019 Muhammad The defective The WM-811K Soft voting Density-Based Related to Accuracy 0.95,
Saqlain et al. [8] patterns in dataset: 811,457 ensemble features, wafer map precision 0.96,

the wafer maps wafer maps gene- classifier (LR2, Geometry-Based defect patterns recall 0.96,
rated from 46,293 RFs3, GBM4, features, F1 0.96,
lots during circuit ANN5) Radon-Based AUC6 0.99
probe tests in a features
fabrication process

2019 Junliang The defective The WM-811K Adaptive balan- Density-Based Related to 10-fold cross-
Wang et al. [9] patterns in dataset: 811,457 cing generative features, wafer map validation

the wafer maps wafer maps gene- adversarial net- Geometry-Based defect patterns accuracy 0.96
rated from 46,293 work features,
lots during circuit Radon-Based
probe tests in a features
fabrication process

2019 Takeshi The basic defe- 17,000 Dataset Deep Convolu- Wafer map Related to basic Accuracy 0.98,
Nakazawa ctive patterns and 1,191 wafers tional Encoder- size of defect patterns 0.99, 0.97 for
et al. [10] and unseen de- Decoder Neural 344 × 480 and unseen U-Net, SegNet

fect patterns in Network (Seg- defect patterns and FCN res-
the wafer maps Net, U-Net, FCN) pectively

2020 Muhammad The defective The WM-811K Deep learning- Pixel of Related to Accuracy 0.96
Saqlain et al. [11] patterns in dataset: 811,457 based convolu- 224×224 image wafer map

the wafer maps wafer maps gene- tional neural defect patterns
rated from 46,293 network for
lots during circuit automatic wafer
probe tests in a defect identi-
fabrication process fication (CNN-WDI)

1CNN: Convolutional Neural Network
2LR: Logistic Regression
3RFs: Random Forests
4GBM: Gradient Boosting Machine
5ANN: Artificial Neural Network
6AUC: Area Under the Curve

TABLE VIII
SUMMARY OF RESEARCH METHODOLOGIES EMPLOYED IN HIGHLY CITED PUBLICATIONS.

distinct types of features—density-based, geometry-based, and
radon-based—were extracted. To address class imbalance, a
data augmentation technique was implemented. Moreover,
enhancements in the classification performance of the CNN-
WDI model were achieved through the incorporation of batch
normalization and spatial dropout. Experimental results show-
cased a commendable average classification accuracy of 96.2%
for the CNN-WDI model, adeptly detecting nine diverse wafer
map defects.

IV. DISCUSSION

In this study, we conducted an extensive bibliometric analy-
sis and trend review evaluation on articles related to AI meth-
ods, which are applied to defects within the semiconductor
domain from 2019 to 2023. A comprehensive analysis was
conducted on a representative set of 808 papers, sourced from
two prominent citation databases, namely Scopus and Web of
Science.

Evidently, the escalating count of yearly publications and
citations undeniably underscores the escalating intrigue and
significance within this research sphere. Drawing from the
publication numbers, China emerges as the most active partic-
ipant, closely trailed by the United States and South Korea. In
terms of institutions, the Chinese Academy of Sciences, Sam-
sung Electronics, and Sungkyunkwan University emerged as
the frontrunners. Among the various publication sources, Pro-
ceedings of SPIE (Scopus) and IEEE Transactions on Semi-
conductor Manufacturing (Web of Science) earned distinction
as the most prolific contributors. Notably, the Keyword Co-
occurrence network graph underscored the paramount utiliza-
tion of artificial intelligence techniques, including deep learn-
ing, machine learning, classification, convolutional neural net-
works, and image enhancement. Furthermore, semiconductor-
focused keywords distinctly spotlighted research primarily
centered around the wafer level.

Through our conducted trend analysis review, a distinct
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Fig. 3. Keyword co-occurrence network graph; the color map on the right
side represents the degree centrality

spotlight was cast on highly cited papers, which unveiled
significant research trends. A predominant theme among these
papers centered around the investigation of defects in wafer
maps and wafer surfaces. These analyses were facilitated by
electron microscope scan images garnered from real equip-
ment or the WM-811K dataset. In terms of methodologies,
a range of algorithms including ensemble classifiers, and
deep learning techniques like convolutional neural networks
and generative adversarial networks were harnessed for the
purpose of defect classification. Impressively, these approaches
yielded remarkable performance levels, boasting an accuracy
exceeding 95%.

From our research, we have distilled several key impli-
cations. Firstly, the AI applications we investigated in the
context of defect analysis within semiconductor manufacturing
bear significant potential for shaping future research. By
effectively classifying and predicting defects through well-
established case studies, AI technologies can find widespread
utility and integration within the semiconductor manufacturing
landscape. Secondly, given that semiconductor manufacturing
is a high-production and low-defect-rate industry operating
at ppm levels, the AI applications we’ve examined in defect
analysis could serve as exemplars for other manufacturing
sectors seeking to optimize their processes. Moreover, aligned
with the trajectory of the Fourth Industrial Revolution and
the realm of digital transformation, the advancements in AI
application technologies can greatly amplify real-time decision

optimization and operational flexibility. These efforts collec-
tively contribute to the evolution of the manufacturing sector
and its transition towards intelligent production paradigms.

However, our research does come with certain limitations.
One substantial constraint arises from the inherent opacity
in the inner workings of artificial neural networks, leading
to difficulties in offering clear and comprehensible explana-
tions for their decision-making processes. The intricate and
deep network structures of these models present challenges
in providing lucid insights into their judgments, ultimately
obstructing their transparent comprehension and application.

Furthermore, it’s noteworthy that many studies we encoun-
tered primarily focus on specific stages, particularly the wafer
level, within the semiconductor manufacturing sequence. Yet,
the broader spectrum of defect research across the various
phases of semiconductor production, encompassing fab, pack-
age, module, and others, remains relatively underexplored.
Considering the constant evolution of semiconductor manu-
facturing processes toward miniaturization, the adaptation of
researched AI techniques to these evolving processes poses
both a challenge and an opportunity warranting further explo-
ration.
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