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Abstract—Recently, LiDAR sensors have become indispensable
in autonomous driving research. Despite continuous improve-
ments in performance and price reductions, noise generated
under adverse weather conditions remains a serious challenge.
Most of the noise generated under such conditions is due
to particles such as fog, rain, and snow. These particles are
extremely fine; therefore, they have a very low reflectance
compared to the targets that the laser should detect. In this
study, we propose a method to distinguish particles by restoring
the reflectance from LiDAR sensing data based on the reflectance
characteristics of the particles. In addition, we propose a method
to make additional judgments based on the geometrical shapes
of adjacent particles to distinguish the particles more accurately.
The proposed method is accurate enough to be compared to
state-of-the-art deep learning methods. Moreover, the execution
time is less than 2 ms on a single-core CPU, demonstrating a
remarkable efficiency, being more than three times faster than
that of methods performed on a GPU. Because noise removal is
a preprocessing step, the proposed method is expected to allow
more resources to be allocated to other, more important processes
for autonomous driving.

Index Terms—Point cloud filtering, De-noising LiDAR, outlier
removal, adverse weather, self-driving, autonomous vehicle

I. INTRODUCTION

Light-detection and ranging (LiDAR) sensors are currently
among the most prominent sensors used in autonomous vehi-
cles. It collects information regarding the physical environment
in the form of point clouds, which are then used for tasks such
as localization and mapping, detection of moving objects, and
obstacle avoidance during autonomous driving. Unfortunately,
LiDAR sensors are susceptible to adverse weather conditions
such as fog, rain, and snow, which can severely affect the
quality of 3D point-cloud data. These airborne particles can in-
terfere with the path of a laser beam, preventing it from reach-
ing its target and resulting in noise in the detected data [1].
As research on autonomous driving matures, researchers face
more frequent encounters with adverse weather conditions.
Concurrently, issues related to noise in point clouds have
gained prominence. Traditional noise reduction techniques
for point clouds are not readily applicable to the rotating
LiDAR systems primarily utilized in autonomous vehicles [2].
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Fig. 1. Reflectance and Geometrical Outlier Removal (RGOR) algorithm:
(a) Snowflakes create substantial noise. (b) The restoration of reflectance
effectively distinguishes snow particles from targets. (¢) When using only
reflectance for noise removal, it can effectively eliminate noises. However, it
might also eliminate objects with extremely low reflectance, such as glass.
(d) Incorporating geometry information for noise removal enhances accuracy.

Consequently, various enhanced filtering techniques [2]-[6],
which build upon existing methods, have been developed.
Moreover, in alignment with current trends, research is actively
exploring approaches based on deep learning [7]-[10].

The purpose of this study is to develop a lightweight and
efficient method that can be directly applied to autonomous
vehicles with limited power and computational capacity. The
filter method for searching neighboring points, which improves
upon existing algorithms, is excessively inefficient and unsuit-
able for use in actual autonomous vehicles. Additionally, deep
learning methods encounter issues with heavy dependence
on training data, and assigning point-wise labels to small
particles, such as fog, rain, and snow, is extremely challenging.

In this study, we analyze LiDAR sensor optical charac-
teristics for noise detection caused by particles and propose
an efficient CPU algorithm: the Reflectance and Geometrical
Outlier Removal (RGOR) technique. RGOR, illustrated in
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Figure 1, leverages LiDAR laser reflections and nearby point
cloud geometry. Initially, we reconstruct reflectance using 3D
point and intensity data, which distinctly identifies particles.
Subsequently, effective particle removal is achieved through
reflectance alone, albeit also removing low-reflectivity entities
such as glass. Finally, we enhance classification accuracy
via geometric data. Our approach achieves 2 ms efficiency
on a single-core CPU, maintaining accuracy comparable to
cutting-edge deep learning techniques. This efficiency reserves
additional GPU resources for crucial autonomous driving func-
tions [11], [12]. Notably, the method is not reliant on learning,
enabling adaptation to diverse sensors and environments.
The contributions of this study are as follows.

o We introduced a reflectance restoration method from the

optical characteristics of the LiDAR sensor.

o We proposed a method to remove particles, which are

outliers of LiDAR sensors, only with restored reflectance.

o We also proposed improving the classification accuracy

method, including the distribution shape of 3D points.

e Our proposed method is straightforward; however, it

outperforms state-of-the-art deep learning methods.

The rest of this paper covers the related work in Section II,
outlines the optical characteristics of LIDAR, which motivated
this algorithm, in Section III, presents the proposed algorithm
in Section IV, discusses evaluation results in Section V, and
concludes in Section VI.

II. RELATED WORKS

Point cloud filtering improves the quality of 3D data, with
numerous studies focused on 3D modeling and mapping [13].
Research on autonomous vehicles, however, is a relatively
recent development. The direct application of traditional re-
search is challenging due to the unique statistical character-
istics of 3D point-cloud models and vehicle sensor data [2].
This section focuses on noise removal techniques for modern
autonomous vehicles, categorized as statistics-based and deep
learning-based, each with concise descriptions.

A. Statistic-based Methods

The statistical approach uses the statistical characteristics
of point-cloud distribution. Classically, there are radius outlier
removal (ROR) and statistical outlier removal (SOR) [2]
filters. Representative examples include dynamic radius outlier
removal (DROR) [2] and dynamic statistical outlier removal
(DSOR) [3], which have been expanded to autonomous vehi-
cles by using ROR and SOR, respectively. The DROR is the
first research result in this field and is based on the number of
neighbors of each point. A k-d tree [14] is constructed, and
outliers are classified by the number of neighbors obtained
using the dynamic search radius, based on the fact that the
density of the target points is inversely proportional to the
distance. The search radius of each point was dynamically
adjusted according to the distance.

DSOR also depends on nearest-neighbor search; however, it
computes the mean and variance of relative distances based on
a fixed number of neighbors for each point. The local density

around each point is estimated and used to filter the outliers.
Low-intensity outlier removal (LIOR) [4] is similar to ROR.
Each point is predicted to be a candidate noise due to the low
intensity. Subsequently, the predicted points are filtered using a
noise intensity level that is lower than that of the target for the
same distance. Dynamic light intensity outlier removal (DIOR)
[5] integrates LIOR and DROR to improve the accuracy by
dynamically adjusting the filtering radius. Dynamic distance-
intensity outlier removal (DDIOR) [6] integrates LIOR and
DSOR. The above statistical approach inevitably requires a
long time to search for neighboring points, making real-time
processing difficult. This may not be an appropriate approach
for autonomous vehicles, which must be processed in real-
time.

B. Learning-based Methods

Recently, deep learning methods have gained traction in
academia. Notably, WeatherNet [7] stands out as a representa-
tive algorithm. It employs LiL.aNet [15], initially designed for
LiDAR semantic segmentation, to create training data. This
aids in reducing point-cloud noise and producing weather-
specific semantic segmentation networks. Due to challeng-
ing noise annotation, the Self-supervised LiDAR de-snowing
(SLiDE) [8] framework tackles noise using self-supervised
learning. LiSnowNet [9] introduces a unique filtering tech-
nique with discrete wavelet transform (DWT) and inverse dis-
crete wavelet transform (IDWT) layers. For training, the Win-
ter Adverse Driving Dataset (WADS) [3] and Canadian Ad-
verse Driving Conditions (CADC) datasets [16] were utilized
solely for unsupervised learning. 4DenoiseNet [10] presents
a noise classification methodology that employs temporally
continuous point cloud data and a semantic segmentation
network. A significant volume of virtual synthetic data was
used to train the semantic segmentation network. However,
deep learning methods face a vulnerability — their effectiveness
hinges on the quality and quantity of the dataset. Noise
annotation difficulty leads to limited data. To counteract this,
virtual data synthesis and self-learning were dual strategies.
Moreover, the complexity of LiDAR sensors and environments
challenges generalization. Despite demanding learning, apply-
ing to different sensors or environments remains intricate.

III. MOTIVATION

The principle of LiDAR is that the sensor emits laser pulses
toward a target area, and when these pulses encounter an
object, they are reflected back to the sensor. By measuring the
time taken for the return pulse, the LiIDAR sensor computes the
distance of the object [17]. LiDAR sensors typically measure
two scalar values of the received power at the point of the
strongest response: distance r, which is calculated as time, and
the intensity u, which is the magnitude. A simple mathematical
model [17] of the received power of this single laser beam is
shown in

P(r) = KG(r)s(r)T(r). (D

Here, K is a constant representing the performance of LiDAR.
G(r) is defined as the geometrical element G(r) = O(r)/r?,

1845



and O(r) € [0,1] is the degree of overlap between the
beam and laser detector. This means that the proximity-
detection performance converges to 1 if it is over a certain
distance. [(r) represents the effect of backscattering and is
affected by particle size and laser wavelength. The last term
represents transmittance, given by 7'(r) = exp(—2ar), where
« stands for the extinction coefficient, typically a small value.
The transmittance 7'(r) approaches 1 for near distances. The
impulse response R(r) of a single beam, which is the output
of an actual LiDAR sensor, can be represented as

R(r) = P(r)pd(r — ). 2)

Where p is the reflectance of the object, and § is the Dirac
delta function.

Figure 2(a) illustrates the received power when particles
like snowflakes and raindrops are present in a single LiDAR
laser beam. In general, LiDAR sensors produce the strongest
or latest detected intensity using (1). @ was detected to be
present close to the LiDAR sensor and has a large overlap
with the beam. In the case of the last return, the target @
attenuated by the sum of (I) to (@) is detected. If the combined
particle intensities surpass the target intensity, even the last
return fails to detect the target. In this way, despite mixed
detection outcomes, small particles inherently exhibit minimal
reflectance. Consequently, determining the actual reflectance
of particles enables differentiation through comparison with
the target reflectance.

We propose an algorithm to distinguish between particles
and targets by extending features from a single beam to the ag-
gregate response of multiple beams. Figure 2(b) demonstrates
the algorithm’s principle applied to the responses of multiple
laser beams. Because only particles closer than the target are
detected, the probability of being a particle increases in the
order of the closest particles among the results of multiple
beams.

IV. RGOR: REFLECTANCE AND GEOMETRICAL OUTLIER
REMOVAL

A. Restoring Reflectance

First, we explain how to obtain the reflectance of the original
object from the intensity and distance information captured by
LiDAR. As explained earlier in (1) and (2), the reflectance p
can be calculated as follows:

R(r) _ R(r)
P(r) ~ KGWBT(r)

R(r) represents the intensity measured at distance r. The
scalar value of the measured intensity is denoted as p, and
the distance r is defined as r = (22 + y> 4 22)'/2. Given the
assumption of K as a constant, G(r) = 1/r?, and T(r) = 1
for a short distance, the reflectance simplifies as follows:
R(ryr? 2 p(a® + 9% +22)

— Sl L N 4
Kp(r) v 7y “

Note, the measured intensity p is typically a quantized positive
value. It should be adjusted by adding a small constant and

p= 3)
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Fig. 2. Received power (intensities) and reflectance characteristics of LIDAR
sensors: (a) received power of the single beam, (b) restored reflactances of
multiple beams

normalize it so that it is not ignored when the value is 0.
~v = Kj(r) relates to the performance of the LIDAR sensor
and the particle size and is an adaptive parameter that changes
depending on the type of sensor and particles, such as fog, rain,
and snow.

The point cloud collected from the vehicle is constrained,
particularly in the negative z-axis direction, extending only
up to the road surface. Therefore, efficiency can be improved
by introducing a weighting to the z-axis, as shown in the
following equation

1 (Jc2 + y? + max(—kz, z)2)

gl
Here, x is a weight, and it is set to a value approximately
between 10 and 15, representing the ratio of the distance at
which particles are detected (25m) to the height of the sensor
above the road surface (2m). k is not a sensitive value, but it
enhances the efficiency of road surface handling.

b= )

B. Grouping and Sorting

This section outlines the process of grouping and sorting
LiDAR responses to address multiple LiDAR beams simulta-
neously. The output of LiDAR encompasses azimuth, altitude,
distance, and intensity information. Figure 3 illustrates se-
quentially aggregated LiDAR responses according to azimuth
and elevation. This approach differentiates itself from the
familiar range image technique [18] and requires minimal
computations for generation, while also enabling response
padding without gaps.

The simplest way to group LiDAR beams is by dividing
them based on azimuth and altitude. In this study, aggregated
images, as shown in Figure 3, are split into groups using 360
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Fig. 3. Sequentially aggregated LiDAR responses for the first scene of WADS dataset sequence 11 [3]: These are clipped -90 to 90 degrees based on in front
of the car. The fist row is distance and second row are intensity. For the best view, these are colorized, and histogram-equalized, respectively.
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Fig. 4. Evaluation metrics analysis according to the variation in 7. At 7, =
1.45, the precision, recall, and IoU of the training sequences reached 0.9350,
0.9356, and 0.8770, respectively.

azimuth and 16 elevation divisions. In the case of WADS,
LiDAR has a resolution of 64 x 1800, so each group can
contain up to 20 elements. The data within each group is sorted
by distance to create 20 x 16 x 360 data blocks.

The sorting process demanded the most computational time
in the proposed algorithm. To address this, we employed a
sorting network [19], which is a comparison network utilized
for sorting fixed-sized inputs. It comprises wires and com-
parators, functioning without branches, making it suitable as
a parallel-sorting algorithm. The comparator employs just min
and max functions, enabling the definition of ascending and
descending orders. The data structure for WADS allows for
up to 20 points per block, and the optimal sorting network for
20 points requires 92 comparators [19].

C. Filtering by Reflectance

As mentioned above, we have obtained a data block sorted
by distance. Filtering is performed on each block. The block
includes the distance from the sensor origin to the attached
point, 3D coordinates, restored reflectance, and the index of
the original point cloud for evaluation. We used two threshold
values to determine whether it is a particle using the restored
reflectance p. These threshold values are defined as 7, for
obvious particles and 7; for obvious targets. Their relationship
is 7 < 7.

If the reflectance within each block satisfies p < 7, it is
classified as a particle. Once a particle is confirmed, nearby
point clouds are also likely to be particles. This leads to a
sequential evaluation where all point clouds satisfying p < 7,
are classified as particles. However, during this sequential

evaluation, if the condition 7, < p < 7 is met, it represents
a boundary between particles and targets, necessitating a
more thorough judgment. Further elaboration on this will be
provided in the subsequent sections. Figure 4 illustrates the
progression of evaluation metrics for the WADS dataset in
response to varying 7,. The graph demonstrates comparable
performance to the current state-of-the-art (SOTA) through
sequential single thresholding of 7,,.

D. Filtering by Geometrical Information

In order to address the ambiguous classification of particles
and targets, a principal component analysis (PCA) method
is used to evaluate the geometric information of neighboring
points [20]. PCA is using singular value decomposition (SVD)
to analyze covariance characteristics. The covariance matrix is
symmetric, and the singular values of the symmetric matrix
coincide with its eigenvalues. The eigenvalue of a 3 x 3 sym-
metric matrix can be efficiently obtained in a closed form [21].
Figure 5 visually represents the relationship between the point
distribution and SVD. The singular values, denoted as A, Ao,
and A3, follow the order A\; < Ay < A\3. Among the eigenvec-
tors (vi, vo, and v3), v corresponds to the surface normal,
whereas vj indicates the direction in which the data points
are located. To compute SVD, it is necessary to gather the 3D
coordinates of neighboring point clouds. For simplification,
when the distance to the target point is r, all neighboring
blocks within a distance d encompass all points falling within
that range. Since each block is already sorted by distance,
the binary search method [14] is employed. Consequently,
the actual boundary of the points forms a scalloped area, as
illustrated in Figure 5. Given that the horizontal ratio of a
block is 1°, the maximum distance between adjacent points
can be determined as d = r arctan(1.5°).

If the count of acquired neighboring points falls below the
threshold value 7., which is insufficient for conducting the
SVD evaluation, these points are categorized as sparse and
classified as particles. The measure of curvature used for shape
evaluation, denoted as

B A1+ Ao+ A3 ’
is derived from the singular value calculated through this
process. Smaller values of (6) indicate flatter or more linear
surfaces. When the value of the expression in (6) exceeds

a certain threshold (v(p;) > 7,), points are identified as
particles due to their scattering in 3D space. Additionally,

v(py) (6)
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Fig. 5. Geometric filtering based on principal component analysis (PCA)

the angular difference between the largest eigenvector vj
(representing the direction of the target) and the point p; can
be determined using the cross product denoted as

V3

n(p;) = : (7)

Pi
1Pl
If n(pj) < 7, the points are considered particles situated
along the axis of the laser beam, as illustrated in Figure 2.
Geometric filtering prevents the removal of objects with very
low reflectivity, such as black vehicles or glass, enhancing
accuracy (Figure 1).

V. EXPERIMENTAL RESULTS
A. Evaluation Environment

The proposed RGOR algorithm was implemented using the
C++ language with SIMD operations and validated on an Intel
Xeon E-2286M mobile processor and NVIDIA RTX A5000
GPU environment, the same to our autonomous driving vehicle
system [18]. To validate the algorithm, we evaluated it using
the winter adverse driving dataset (WADS), which contains
point-wise annotations for snowflakes, and synthetic virtual
weather environments generated with weather simulators to
assess various weather conditions. For evaluation, we used
precision TPT+7PFP’ recall TPZ%, and intersection-over-union
(10U) 7prprFx- Which are commonly used in binary
classification problems. Here, TP, FP, and FN represent
true positives, false positives, and false negatives, respectively.
Precision signifies the ratio of correctly detected particles to all
detected particles, recall indicates the ratio of detected particles
to all particles that should be detected, and IoU measures the
overlap between detected and actual particles. We divided the
dataset in half for train and test data, then used the simplex
method [14] to extract optimal parameters from the train data.

B. Quantitative Evaluation

First, we used the winter adverse driving dataset (WADS)
[3] to validate the algorithm. To the best of our knowledge,
WADS is the only publicly available dataset that is point-
wise labeled with particles, such as snow. WADS has 22
classes, the same as SemanticKITTI [25], with additional
labels for active—snow and accumulated-snow. We
defined active-snow as particles, which are outliers. Fur-
thermore, we used weather simulators to authenticate diverse

weather scenarios. The simulators employed fog_sim [22]
for fog, snow_sim [24] for snow, and LISA [23] for rainy
conditions.

Table I compares the evaluation metrics of existing state-
of-the-art algorithms. Furthermore, the results have been visu-
alized in Figure 6. LiDAR in autonomous vehicles typically
operates at 10Hz, so all autonomous driving processes must
be completed within 100ms. As evident from the results,
statistical methods like DROR and DSOR exhibit high recall
but remarkably low precision, leading to the removal of non-
particle targets and proving impractical for real-time applica-
tion due to slowness. LiSnowNet and 4DenoiseNet, employing
deep learning approaches, demonstrate high performance in
terms of precision, recall, and execution time, showcasing
their applicability for real autonomous vehicles. However, LiS-
nowNet is trained on WADS, and 4DenoiseNet is trained on
snow_sim data, leading to significant performance degradation
when applied to different datasets. Our proposed approach
demonstrates performance comparable to deep learning-based
methods even when using only reflectance, and when incorpo-
rating geometric information, it shows better results in some
cases. Notably, the execution speed is 3 to 10 times faster.
Moreover, as it is not a training-based method, it effectively
adapts to unseen data and other sensors.

VI. CONCLUSIONS

In this study, a technique is proposed to effectively remove
the noise caused by particles such as fog, rain, and snow
that float in the air and act as noise in LiDAR sensors. This
technique classifies the particles and the removes noise based
on the fact that the particles have extremely little reflection
compared to the target and are detected sequentially from the
nearest particles. The proposed algorithm suggests a method
to restore the reflection from LiDAR sensor input and sequen-
tially classify the particles. Additionally, a method is proposed
to increase the classification accuracy by using the distribution
of neighboring points when classification is difficult with only
reflection. The proposed technique was experimentally verified
in various environments. Future research is needed on methods
to automatically apply adaptive parameters, and it is suggested
that there is value in researching deep-learning methods that
use the restored reflectance proposed in this study as a feature
in situations where a higher performance is required.
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