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Abstract—The introduction of an automation system in facili-
ties has enabled the continuous flow of data streams, facilitating
easier and more accessible data collection. Moreover, advance-
ments in machine learning and deep learning techniques have
made it possible to detect abnormalities in data streams, such
as electrical energy and equipment diagnosis data, almost in
real-time. Early detection of such anomalies allows for proactive
maintenance and cost savings, ensuring stable operation of the
entire system. Conventionally, the State of Charge (SOC) and
State of Health (SOH) have been used as major criteria for
assessing facility abnormality in electrical energy data. However,
these measures are not suitable for real-time diagnostics due to
their design for post-discharge battery analysis. In this paper,
we propose the utilization of ensemble stacking technique from
the ensemble models to enable accurate and real-time health
condition monitoring of electrical equipment using open data
sources. Additionally, we perform a comparative analysis among
various machine learning and deep learning techniques and
optimize the model using a grid search algorithm to achieve
a high-performing, robust, and generalizable health condition
monitoring system.

Index Terms—Machine Learning, Ensemble Learning, Pattern
Diagnosis, Stacking, Tabular Data

I. INTRODUCTION

Generally, State of Charge (SOC) and State of Health
(SOH) are used as criteria to measure facility abnormalities in
electrical equipment data. SOC and SOH are used to assess the
remaining lifespan and current performance status of batteries.
The measurement of SOC and SOH is often achieved by
repeated measurement of battery charge and discharge cycles
[1, 2]. However, due to the time lag between charging and
discharging, measurement noise is smoothed using the cubic
smoothing spline method to mitigate any faults introduced.
Similarly, SOC and SOH are not suitable for real-time analysis
of the state of electrical equipment in the context of building
an automated monitoring system.

In this paper, various learning techniques are employed
to effectively analyze abnormalities in electrical equipment
systems using open datasets. We present comparative perfor-
mance analysis in terms of accuracy and F1 score to classify
the current state of the system into “normal,” “caution,” or
“warning” categories. Additionally, we provide the training
and inference times for each model to demonstrate their real-
time inference capabilities in the continuous flow of data
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streams. Finally, we optimize and evaluate the performance of
the models using grid search to identify the best-performing
model.

II. RELATED WORK

The increasing availability of tabular data in power energy
facilities, numerous machine learning and deep learning meth-
ods have been proposed to achieve better generalization per-
formance. Previous research has identified several inefficient
aspects when analyzing tabular data using machine learning
and deep learning models.

In the case of machine learning-based analysis, tabular data
typically consists of a large number of columns (features),
which can lead to the curse of dimensionality. The curse of
dimensionality refers to the degradation of model performance
and the potential for overfitting as the number of features
increases. To overcome this, various methods such as feature
selection or dimensionality reduction techniques have been
proposed. Additionally, tabular data often exhibits a static
nature, with a lack of temporal continuity between data
points. In such cases, it can be challenging for models to
capture the dynamic changes in the data, requiring the use
of models specifically designed for handling time series data
or considering temporal features.

For analysis using deep learning models, tabular data fol-
lows a structured format with columns and rows, whereas deep
learning models are predominantly designed to process contin-
uous data. As a result, these models may not effectively handle
such structured information. Therefore, various methods have
been proposed to preprocess or transform tabular data before
directly inputting it into deep learning models. Techniques
such as pretrained models or RNN [11], Transformer [9, 10],
Word Embedding, and tokenization are used to format the
data. Subsequently, models like RNN [11], CNN [9, 10],
and others are adopted for classification tasks. Complex mod-
els like deep neural networks require significant computing
resources and time for training. To address these issues, a
deep learning model based on Graph Convolutional Networks
(GCN) that models multiple relationships simultaneously was
used for multi-task classification, demonstrating promising
performance [3]. However, deep learning faces challenges in
interpreting learned representations or providing rationales for
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predictions. In the case of tabular data, where interpretation
is important, deep learning has limitations in explaining the
process. Therefore, in this paper, we propose a methodology
that combines machine learning and deep learning techniques
by utilizing the stacking technique of ensemble models to
process tabular data effectively.

The stacking technique in ensemble models combines mul-
tiple different base models to create a powerful model, and
there are several advantages of using ensemble stacking in
tabular data:

Performance improvement: Combined the predictions of
individual models, ensemble stacking can result in more
accurate predictions.

Reduction of overfitting: Combined models with differ-
ent biases, ensemble stacking can produce more generalized
predictions and reduce overfitting.

Learning from diverse features: Each model in the en-
semble can learn different aspects of the data, allowing the
ensemble model to leverage the diverse features present in
tabular data.

IIT1. METHOD

In this section, we extensively discuss the methodology for
performing pattern classification on tabular data from power
facility energy patterns and fault analysis sensor data, utilizing
various models. After visualizing and preprocessing the data,
we conducted data training and evaluation using XGBoost
+ Deep, Deep, XGBoost, SVM, Random Forest, KNN, and
Naive Bayes models. Furthermore, we compared and analyzed
the reasons for selecting these models and their performance.
Based on this analysis, we selected the most suitable model
for the tabular data of power facility energy patterns and fault
analysis sensor data. Additionally, we compared and analyzed
the application of the Grid Search algorithm to determine the
impact of its usage.

A. Exploratory Data Analysis

we describe dataset, preprocessing steps, and the baseline
machine learning models for the experiment.

a) DATASET: Power Facility Energy Pattern and Fault
Analysis Sensor’ data from AI Hub, which we collected, rep-
resented SOH values by inputting power quality measurements
directly measured for 10 types of facilities. Generally, the SOH
is determined by comparing the battery’s current capacity to its
initial capacity when it was new. The Equation 1 is commonly
used to calculate SOH as a percentage:

SOH = 2 %100 (1)
B
e « : The Current Capacity
e (3 : The Initial Capacity
the Current Capacity refers to the actual capacity of the
battery at the time of measurement, while the Initial Capacity
represents the capacity of the battery when it was brand new.
Dataset segments raw power quality data collected in 1-minute
increments to power factor average, voltage harmonic. SOH

diagnostic labeling (normal, caution, and warning types) are
present, which states the condition of the system. The labeling
criteria is expressed as follows:

o normal : Power factor 80% or above, voltage harmonics
3% or below

o caution : Power factor 60-80%, voltage harmonics 3-5%

o warning : Power factor 60% or below, voltage harmonics
5% or above

b) Preprocessing: ~We extracted training dataset
1,692,057 SOH diagnostic labeling and Test dataset 233,091
SOH diagnostic labeling using labeled pump general motor
data, and the analysis showed class balance as shown in
Figure 1.
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Fig. 1. Class balance for each label. Training dataset includes 510,679
cases, 282,501 cases, and 898,877 cases for normal, caution, and warning,
respectively.

To classify the patterns among the three states, we utilized
three features from SOH diagnostic dataset where, E’ stands
for voltage harmonic average, 'F’ stands for current harmonic
average, and the G’ stands for power factor average.

After removing the outlier using IQR, oversampling was
conducted to solve the overfitting problem due to class
imbalance. We oversampled the other classes to match the
largest label (2). The result after the oversampling, the class
distributions are shown in Figure 2.

TABLE I
MEAN AND VARIANCE FOR EACH FEATURES.

Features Mean Value  Var Value
voltage harmonics 4.42 7.80
Current harmonics 12.89 338.01
Power factor 0.51 0.14

We also analyzed the mean and variance values for each
features which is shown in Table 1. Also, the distribution of
each features are described in Figure3. As we can see, the
mean and variance are largely different among the selected
features, we scaled the entire dataset into the range of values
from O to 1 using min max scaling to preserve the distribution
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Fig. 2. Class balance for each label after oversampling. Training dataset after
oversampling includes 898,877 cases for all three different classes.
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Fig. 3. Distribution of the features a) stands for E (voltage harmonic
average), b) stands for F (current harmonic average), and c) stands for G
(power factor average).

of the original data. For the experiment, we utilized the smaller
portion of the training dataset for training and validation
considering the size of the collected dataset compared to the
capacity of the model.

B. Machine Learning Models

In this section, we describe dataset, preprocessing steps, and
the baseline machine learning models for the experiment.

XGBoost: XGBoost is known for its high prediction perfor-
mance and accuracy. It can handle complex relationships and
capture non-linear patterns in the data effectively. XGBoost
provides feature importance scores, allowing for feature selec-
tion and dimensionality reduction. It includes regularization
techniques to control overfitting and offers fast execution
speed, making it suitable for large-scale datasets. The algo-
rithm 1 represents the functioning principle of the XGBoost
model[6].

RandomForest Classifier: Random Forest Classifier is
robust to overfitting due to its ensemble of decision trees. It
can handle high-dimensional data with complex relationships
and noisy features. Random Forest Classifier can handle both
numerical and categorical features without requiring feature
scaling or one-hot encoding. It also provides feature impor-
tance scores, aiding in feature selection and understanding the
data. The algorithm 2 represents the functioning principle of
the RandomForest Classifier model.[11].

K-Nearist-Neighbors Classifier: KNN is a simple and
intuitive algorithm that is easy to understand and implement.
It doesn’t make strong assumptions about the underlying data
distribution, making it suitable for various types of data. KNN
can handle multi-class classification without modifications

Algorithm 1 XGBoost Algorithm
Input: Training data: (z1,y1), (Z2,Y2)s s (Tny Yn)
Output: XGBoost model
1: Initialize the model: Fy(z) =0
2: Set the learning rate: 7
3: Set the number of iterations: 7'
Boosting Iterations:
4: fort =1to T do
5:  Compute the negative gradient: r;; = —
fort=1,2,....n
6:  Fit a base learner to the negative gradients: h;(x) =
BaseLearner(z, 71z, 72ty -, T'nt)
Update the model: Fy(z) = Fi_1(x) +n - h(z)
8: end for
9: return XGBoost model: Fr(x)

OL(yi, Fi—1(xi))
OF:—1(xi)

Algorithm 2 RandomForest Classifier Algorithm

Input: Training data: (z1,y1), (Z2,Y2)s s (Tny Yn)
QOutput: RandomForest model
1: Set the number of trees: NV
2: Set the number of features: M
3: Set the maximum depth of each tree: D
4: Set the size of the random feature subset: K
s: Updated node embeddings H“): Node embeddings after
passing through L layers.
Compute Graph Laplacian:
6: Calculate the adjacency matrix A and degree matrix D of
the graph.
7. Compute the graph Laplacian matrix L = D — A.
Compute Graph Laplacian:
8: for i =1to N do
. Update node embeddings: H") = ReLU(D~°%. A .
D705 . gU=1 D)
Here, H~1) is the node embeddings from the previous
layer, and W is the weight matrix for layer [.

10:  Randomly select K features from the total M features:
SelectedFeatures = RandomSubset(Features, K)

11:  Build a  decision tree using the  sub-
set and selected features: Tree =
BuildDecisionTree(Subset, SelectedFeatures, D)

12: end for

: return the updated node embeddings H (") from the last

layer.

—_
(98]

and can effectively capture non-linear relationships between
features. KNN algorithm identifies the k nearest neighbors
from the training dataset based on the equation2 and assigns
the class label that is most prevalent among the neighbors.
The value of k is a hyperparameter that needs to be specified
before applying the algorithm[4].

d(A,B) = /(22 — 1) + (12 — 1)? @

SVM: SVM is effective in high-dimensional spaces and
performs well with complex datasets. It can handle a large
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TABLE II
THE COMPARATIVE PERFORMANCE OVER DIFFERENT MACHINE LEARNING TECHNIQUES. THE BEST-PERFORMING MODEL IS MARKED AS
BOLDFACE. WE TRAINED EACH MACHINE LEARNING MODELS ON THE SAME DATASET AND TESTED ON THE SAME TEST DATASET FOR THE FAIR

COMPARISON.
Model Accuracy  F1 Score  Running Training  Runtime Prediction
XGBoost + Deep 0.85 0.85 23.49 0.31
XGBoost 0.84 0.84 1.30 0.08
Random Forest 0.84 0.84 1.27 0.08
KNN 0.81 0.81 0.02 3.50
SvC 0.79 0.80 7.16 120.30
Naive Bayes 0.71 0.72 0.01 0.03
Deep 0.80 0.80 6.90 118.46
number of features and effectively capture complex relation-
ships between them. SVM is robust against overfitting and
provides the ability to control the balance between maximizing
the margin and minimizing training error. It can also handle
non-linear decision boundaries through the use of kernel o 3.14% 3.22%
functions. SVMs attempt to find a hyperplane that maximizes
the margin(Equation 3), which is the distance between the
hyperplane and the closest data points of each class[5]. I
@
) 2 ‘wTJ: + b! -
margin = = G B 1.70% 16.02% 2.25%
5
This margin maximization approach allows SVMs to be ef- E
fective in handling complex decision boundaries and dealing &
with data that may not be linearly separable.
Naive Bayes: Naive Bayes is computationally efficient
and performs well with large datasets and high-dimensional ™ 2.37% 1.62% 44.28%
features. It is robust to irrelevant features and can handle
both categorical and continuous features. Naive Bayes pro-
vides interpretable probabilistic predictions, allowing for easy 0 1 2
understanding of the model’s confidence in its predictions. True Label

The Naive Bayes algorithm calculates the probability of a
particular data instance belonging to a specific class by esti-
mating the conditional probabilities of the features given each
class(Equation 3)[12].

PCX)p(C)

PO ==

“4)

C. Deep Learning Model

MLPClassifier: MLPClassifier is composed of multiple
layers, making it suitable for modeling nonlinear relationships.
The addition of the ReLLU function introduces nonlinearity,
allowing the model to effectively learn and classify complex
patterns in tabular data. Furthermore, the MLPClassifier can be
well combined with other engineering techniques, enhancing
its ability to handle complex patterns and perform classifica-
tion tasks on tabular data.

D. Ensemble Model

XGBoost + Deep: The stacking technique was utilized as an
ensemble model. Stacking combines the strengths of various
machine learning and deep learning models by allowing each
model to learn different aspects of the data and combining their

Fig. 4. Confusion matrix of the optimized XGBoost model.

predictions. This approach enables more accurate predictions.
Moreover, by combining models with different biases, stacking
can achieve better generalization performance. It also enables
the models to learn and utilize the diverse features present in
tabular data.

E. Grid Search

Grid Search: For finding the optimal set of hyperparame-
ters, we utilized the grid search algorithm by setting the limited
range of parameter values. After comparing the performance
of machine learning models, we selected the best-performing
model for optimizing the parameters.

IV. EXPERIMENTAL RESULTS
A. performance of Machine Learning Models

One of the main challenge of the task is to determine
whether the machine learning model can be utilized for
the real-time inference over the continous flow of the data
stream. Thus, we first trained the selected machine learning
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TABLE III
THE TRAINING RESULT OF GRID SEARCH. WE ANALYZED THE ACCURACY OF THE BEST PARAMETERS AND TEST DATA IN THE RESULTS OF FOUR
CROSS-VALIDATIONS WITH SPLIT TRAINING.

Model Mean Test Score  Ranking Learning Rate  Number of Estimators Max depth  Alpha
modell 0.86532 1 0.003 130 4 0.001
model2 0.86522 2 0.002 150 3 0.001
model3 0.86520 3 0.002 120 4 0.002
model4 0.86520 3 0.002 100 3 0.003
model5 0.86520 3 0.002 110 3 0.004
model6 0.86516 6 0.002 120 4 0.003
model7 0.86516 6 0.004 100 4 0.003
model8 0.86512 8 0.001 110 4 0.004
model9 0.86511 9 0.001 120 4 0.001
model10 0.86511 9 0.002 120 3 0.001

models over the preprocessed traning dataset and evaluated
the performance on the test dataset. We also measured the
training time with the prediction time in seconds. The Table
2 shows the experimental result of different machine learning
models. As we can see, the XGBoost outperformed over the
other machine learning techniques where the accuracy and f1
score reported 0.85 and 0.85, respectively. Also, in terms of
prediction time it only took 0.11 seconds to infer over 200,000
samples of test datasets, which indicates the capability of the
model to be used for real-time inference.

B. Result of the Grid Search

As the the superior performance of the XGBoost+Deep
model, we optimized the parameters: number of estimators
(increased by 10 from 120 to 160), learning rate (increased
by 0.001 from 0.001 to 0.005), max depth (2, 3, 4), and
alpha (increased by 0.001 from 0.001 to 0.005). The parameter
number of estimators represents the number of trees, learning
rate determines the amount of weight update at each step,
max depth indicates the maximum depth of trees, and alpha
serves as the L2 penalty parameter controlling the weights. We
trained 192 models with different parameter values for number
of estimators, learning rate, max depth, and alpha. The best-
performing model achieved an accuracy of 86.53%, showing
an improvement of 1.08% in accuracy. We selected the top
10 models based on mean test score among the 192 models
and presented the parameters and results in Table 3. The
optimized XGBoost+Deep model’s confusion matrix is shown
in Figure 4. The confusion matrix presents the prediction of
values labeled as ’Normal,” ’Caution,” and *Warning’ with an
accuracy of approximately 85.7%.

V. DISCUSSION

We analyzed a dataset consisting of 510,679 records labeled
as 'normal’. The average power factor is 74.43%, and the
average voltage harmonic is 4.25%. However, the construction
guidelines suggest that for labeling the normal state of power
quality data, the power factor should be above 80% and
the voltage harmonic should be below 3%. The criteria for
measuring the normal state of electrical equipment data need
to be supplemented, as shown in Table 1.

We applied various algorithms to analyze patterns in tabular
data from electrical diagnostic equipment and explored them to
predict the state of the equipment. From the experimental re-
sults, we found several interesting findings. The distribution of
each class is highly distinguishable. In Table 2, the ensemble
model XGBoost+Deep achieved the highest performance with
an accuracy of 85.45%. Generally, boosting-based approaches
are vulnerable to overfitting, but XGBoost+Deep performed
well even on unseen data. This can be attributed to the
ensemble learning characteristics, normalization techniques,
outlier handling, and the use of simple models within the
ensemble, which enhance generalization and mitigate the risk
of overfitting. Additionally, the performance of KNN was
surprisingly high, demonstrating fast training time of 0.02
seconds and excellent accuracy. This indicates clear decision
boundaries for each class.

However, the dataset lacks richness in information. Despite
performing hyperparameter tuning for key parameters that
could strongly impact the results, the differences were min-
imal. There are two main possibilities when hyperparameter
tuning is not effective. One is that the tuning process focused
on a limited set of parameters such as learning rate or the
number of estimators, and the other is that the dataset itself
may not have significant features that could greatly improve
performance, indicating that useful predictive information may
have already been extracted without tuning. Considering the
exploration of key hyperparameters and the effectiveness of
KNN, the latter possibility is more likely.

VI. CONCLUSION

The pattern analysis of tabular data from electrical diag-
nostic equipment was effectively performed using the XG-
Boost+Deep model, which was attributed to the stacking tech-
nique of ensemble models. The ensemble model diversified the
data characteristics analyzed by each model, helping to address
issues such as the curse of dimensionality, overfitting, and
handling structural information when analyzing the structure
of tabular data with machine learning and deep learning
models.

Furthermore, the stacking technique of ensemble models is
expected to be effective not only for tabular data but also for
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other data formats. Therefore, research should be conducted
in this direction, exploring the combination of models other
than XGBoost+Deep to improve performance.
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