

Code Repository Vulnerability Focusing on
RepoJacking

Minjae Kim
Data Intelligence Lab,

Information Security Institute
ESTsecurity

Seoul, Republic of Korea
mjkim45@estsoft.com

Wookhyun Jung
Data Intelligence Lab,

Information Security Institute
ESTsecurity

Seoul, Republic of Korea
pplan5872@estsecurity.com

Shinho Lee
Data Intelligence Lab,

Information Security Institute
ESTsecurity

Seoul, Republic of Korea
lee1029ng@estsecurity.com

Taehyeong Kwon
Data Intelligence Lab,

Information Security Laboratory
ESTsecurity

Seoul, Republic of Korea
brightkwon@estsecurity.com

Eui Tak Kim
Business Intelligence Center

ESTsecurity
Seoul, Republic of Korea
etkim@estsecurity.com

Abstract—A supply chain attack is a type of cyberattack
executed by infiltrating a target system during software
distribution, allowing malicious code disguised as something
benign to be distributed without raising suspicion. Any supply
chain attack that targets open sources may lead to critical
consequences because open sources are made available for use
by anyone. Meanwhile, GitHub, a widely used open-source
management tool, supports the function of code repositories.
For that reason, GitHub has been widely used by individuals
and renowned businesses for open-source management and
distribution. RepoJacking is a type of supply chain attack
wherein GitHub's repositories are hijacked and exploited by
malicious actors. This study aims to assess the practical
feasibility of RepoJacking and verify the vulnerability of a set of
repositories publicly released on GitHub against RepoJacking.
In addition, methods for protecting against RepoJacking, along
with a tool designed to assess the integrity of repositories against
RepoJacking, are proposed.

Keywords—supply chain, repository, hijacking, vulnerability

I. INTRODUCTION
Efficient code development requires reliable code

repositories. GitHub [1], a well-known code repository, is
utilized for managing or releasing code developed by
individuals or businesses, similar to other code repositories.
More specifically, GitHub allows individuals and businesses
to distribute code or packaged code for different projects
either in a public or private manner. According to GitHub [2],
as of 2023, more than 330 million code repositories are
registered on the platform, as shown in Figure 1.

[Figure 1] Statistics on GitHub:
account/organization/repository

Among the numerous code repositories available on
GitHub, many are recognized for their popularity and have
been made accessible to the general public as open-source
projects. Developers often refer to open-source projects to find
the necessary code, aiming to facilitate the development
process and reduce the required time. Consequently, it is
possible for a certain project to remain intricately linked to the
development outcomes of numerous other projects. If this is
the case, any repository hijacking attack conducted against
open-source projects may pose a serious threat in many ways,
for example, by infecting them with malicious code.

Repository hijacking, also known as RepoJacking, is a
cyberattack in which malicious actors aim to steal others'
information while masquerading as legitimate owners
themselves [3]. As such, through RepoJacking, attackers steal
others' repositories and pretend as if they are the legitimate
owners of them. This allows them to gain the trust of users
attempting to access the repositories, ultimately facilitating
the distribution of the specific malicious code they intend to
spread. As a supply chain attack, RepoJacking empowers
attackers to conduct a range of malicious activities without the
need to infiltrate multiple individual computing systems.
Therefore, RepoJacking may pose a substantial threat not only
to the open-source ecosystem but also to the overall supply
chain system.

The present study aims to verify how vulnerable these
repositories are to RepoJacking from a practical perspective
and describe measures to address the identified issues. The
objectives of this paper are as follows.

- To verify the vulnerabilities of a proof of concept
(PoC) designed for RepoJacking and actual GitHub
repositories, which may lead to supply chain attacks

- To propose countermeasures against RepoJacking
and effective tools to assess the risks

Chapter 2 provides a description of a tool designed to
assess the integrity of repositories against RepoJacking, along
with previous studies on RepoJacking. Chapter 3 identifies
and verifies the vulnerabilities of repository systems against
RepoJacking. Finally, in Chapter 4, countermeasures to
address vulnerability concerns associated with RepoJacking,

1880979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

as well as tools that can be used to evaluate the risks, are
proposed.

II. BACKGROUND

This chapter is composed as follows. Section A provides a
brief description of Git and GitHub. Section B then introduces
GHTorrent, an archival system designed for tracking and
storing GitHub activities. Subsequentially, Section C provides
an overview of RepoJacking attacks. In Section D, previous
studies on RepoJacking attacks and relative issues are
reviewed.

A. Git & GitHub
Git[4] is a snapshot stream-based distributed version

control system (DVCS) used to track changes to files while
facilitating coordination of work on these files by multiple
users. This system is mainly used for source code management
and currently available for use as open-source software.
GitHub is a web service that provides support for hosting Git
repositories. This service is compatible with the graphic user
interface (GUI) and thus more user-friendly compared to Git.
Additionally, as it is built on Git, GitHub supports source
code, as well as a variety of other formats, such as graphs and
markdowns. This enables users not only to manage source
codes but also to access various services, such as Wiki.
Thanks to these benefits, many users choose to use GitHub for
storing and distributing code.

B. GHTorrent
GHTorrent [5] is a dataset that collects a series of events

occurring on GitHub using an API provided by GitHub. This
system collects GitHub commits, along with repository
information, and releases them on the web. The GHTorrent
project was launched in 2013. In GHTorrent, data is provided
in the form of an SQL dump, as presented in Figure 2.
GHTorrent's data include repository addresses, details of
commits, and hash values. Thus, GHTorrent provides access
to the GitHub repository data needed for addressing the risk
of RepoJacking.

[Figure 2] GHTorrent dump data head

C. RepoJacking
RepoJacking is an abbreviated form of the term

"repository hijacking." As its definition says, the term refers
to the malicious act of attackers hijacking repositories
belonging to other individuals. RepoJacking is classified as a
supply chain attack because it targets repositories, which are
publicly released or available on the web to be utilized in
various individual projects. RepoJacking is commonly

executed by taking advantage of GitHub's repository
redirection policy. GitHub has a policy that when users
attempt to access their repository using their old account name
after changing it, they will be redirected to a repository under
the new account name. By exploiting this point, RepoJacking
creates an account that has the same name as the old account
name of a user and then generates a repository with the same
name as the user's, thereby leading the user to unknowingly
access the attacker's repository. The user will then mistakenly
believe that the repository is the one under the user's previous
account name, not the one belonging to the attacker. From
then on, the user will execute any code available in the
repository without any doubt. Figure 3 illustrates how
RepoJacking attacks user repositories.

[Figure 3] RepoJacking attack

Using RepoJacking, malicious actors can execute the
following three types of attacks.

1. The attacker collects a repository address available in
the installation script of a project and creates a
repository with the same name, inducing the user to
be redirected to the attacker's repository and execute
the code that the attacker wants to spread.

2. The attacker identifies a repository to which the user
will be redirected for a reason, for example, due to a
change to the username, and then creates a repository
using the same name as the user's previous username
before being changed to redirect the user to the
attacker's repository and induce the user to
unknowingly execute the code that the attacker wants
to spread.

3. The attacker recognizes that, despite a change in the
username, which results in a corresponding change in
the repository link, some projects' repository releases
have not updated the link address. The attacker then
creates a repository using the user's previous
username, leading the user to unknowingly access the
attacker's link and execute the code that the attacker
intends to spread.

The feasibility of these RepoJacking attacks is verified in
Chapter 3.

D. Previous studies
The concept of "RepoJacking" first emerged in a blog

hosted by Security Innovation in 2020 [6]. The blog [6]
demonstrated that RepoJacking could be actually executed in
three scenarios exploiting GitHub's repository redirection
policy. Afterward, actual case studies on the vulnerabilities of
repositories against RepoJacking were reported by multiple

1881

research groups, such as the Aqua Nautilus team and the
Checkmarx team [7, 8]. The Aqua Nautilus team introduced
various vulnerability issues that might arise in the face of
RepoJacking while describing the execution process of a PoC
using actual repositories [7]. Meanwhile, the Checkmarx team
presented protection measures taken by GitHub against
RepoJacking. The team also described possible methods for
bypassing such protection measures in order to execute
RepoJacking [8]. A relevant previous study defined
RepoJacking as a type of supply chain attack [9]. In another
study [10], actual RepoJacking cases were introduced, and
possible protection measures that could be taken against such
a supply chain attack by open-source management teams were
proposed.

III. EXPERIMENT
In this chapter, the actual process of RepoJacking, as

describe earlier, is executed in practice. Afterward, a list of
repositories is collected, and the number of repositories that
are vulnerable to RepoJacking is estimated.

A. RepoJacking exploit
To practically verify the vulnerability of repositories

against RepoJacking, two GitHub accounts were created as
follows.

- Sktestme (attacker): An account that executes
RepoJacking

- Sktestme (victim): An account that is targeted by
RepoJacking

The vulnerability assessment process was performed
according to the following procedure. The results confirmed
the possibility that the tested repository could be exploited by

RepoJacking. Figure 4 presents a schematic diagram of the
developed PoC, illustrating how RepoJacking works, i.e.,
when attempting to access the repojjjacking repository
belonging to sktestme (victim), the user is redirected to the
repository owned by sktestme (attacker).

Detailed verification steps

1. Create a repojjjacking repository using the account of
sktestme(victim).

2. Change the account name of sktestme(victim) to
sktestme2. Check to see if the user is redirected to the
repository under the new account sktestme2
(https://github.com/sktestme2/repojjjacking) when
attempting to access the link
"https://github.com/sktestme/repojjjacking."

3. Create a new account named sktestme (attacker) and
a corresponding repojjjacking repository.

4. Check to see if the user is redirected to the repository
under the account of sktestme (attacker) instead of the
one under sktestme2 when attempting to access the
link "https://github.com/sktestme/repojjjacking."

B. Mass RepoJacking Exploit
SQL data for the period of 2013-2015 were collected from

GHTorrent to identify repositories vulnerable to RepoJacking.
Subsequently, the collected GHTorrent data were processed in
a suitable form and assessed according to the same procedure
as shown in Figure 5.

[Figure 4] RepoJacking PoC

1882

[Figure 5] RepoJacking verification flow

As a result, a total of 55,000 repositories were collected.
The collected repositories were tested for their vulnerability to
RepoJacking based on the following two criteria.

- Vulnerable to RepoJacking: Redirected to a new
account or repository when attempting to access the
target repository

- Critical to RepoJacking: Redirected to a new
repository, also leading to the deletion of the previous
account when attempting to access the target
repository, which means that the target can be
immediately attacked

The verification results demonstrated that 7,737 of the
55,000 repositories were Vulnerable to RepoJacking. The
repositories recognized as being Vulnerable to RepoJacking
were subjected to further verification to determine whether
they were Critical to RepoJacking. Operators attempted to
access their account address and checked the response. If the
message "404 Not Found" was returned, the corresponding
repository's previous account name was considered to have
been deleted. The results confirmed that 1,039 repositories
were Critical to RepoJacking. Next, the number of stars, a
popularity indicator for GitHub's repositories, was analyzed
for the 1,039 repositories identified as Critical to
RepoJacking. The top 26% of them were found to have a
rating of 200 stars or more, as shown in Figure 7. These
repositories were classified as popular ones.

[Figure 6] Experimental results

[Figure 7] Number of stars of the repositories vulnerable

to RepoJacking

Out of the repositories that were Critical to RepoJacking,
302 were identified as popular repositories with a rating of 200
stars or more. The exploitation of these popular repositories
for RepoJacking could be a major concern for various
projects, developers, and users. Possible countermeasures
against RepoJacking, which can develop into a significant
supply chain attack, will be proposed in Chapter 4.

IV. COUNTERMEASURES
In an attempt to address vulnerability issues associated

with RepoJacking, as discussed above, GitHub revised its
policy to discard any popular repositories for which the
number of copies is 100 or more when their account name is
changed. Consequently, the corresponding repository names
can no longer be used [10]. However, this protection measure
can be bypassed, as demonstrated by a case study by the
Checkmarx team [7]. Furthermore, it is not applicable in
situations where the number of copies is fewer than 100. Thus,
this approach does not constitute a fundamental solution. The
present study proposes two methods for protecting against
RepoJacking, as detailed below.

- Assign unique eigenvalues, such as UUID, to each
account based on their creation time and other
indexes. This approach ensures that individual
accounts are separately managed, even if they have
the same name.

[Figure 8] Account UUID

1883

- Assign unique eigenvalues, such as UUID, to each
repository based on their creation time and other
indexes. This approach ensures that individual
repositories are separately managed, even if they have
the same name.

[Figure 9] Repository UUID

Assigning a unique UUID to each account limits the scope
of integrity test subjects solely to accounts. This ensures that
even if repositories share the same name, only integrality tests
on accounts are necessary to prevent the user from being
redirected to the attacker's repository. Meanwhile, assigning a
unique UUID to each repository expands the scope of integrity
test subjects to the entire group of repositories because only
repositories possess unique UUIDs regardless of the
associated account. Consequently, only integrity tests on
repositories are needed, regardless of the account name, to
prevent the user from being redirected to the attacker's
repository. However, this approach is expected to be more
costly compared to assigning UUIDs to account names.

The proposed approaches are expected to ensure that users
will be properly redirected to the legitimate repository, rather
than the attacker's repository, through integrity tests on both
accounts and repositories, even if the same account or
repository names are used.

This paper also proposes a simple tool designed to assess
the integrity of repositories against RepoJacking. The
functioning of the tool is outlined as follows.

1. Access GitHub's repository given as input.

2. Upon accessing the repository, if its address differs
from the one provided in the input (i.e., redirected to
another repository), the corresponding repository is
categorized as Vulnerable to RepoJacking.

3. If the target repository is identified as Vulnerable to
RepoJacking, access the corresponding account
address. If the response is "404 Not Found," it is
categorized as Critical to RepoJacking.

4. If the target repository does meet the conditions
specified in 2 and 3, it is categorized as "Safe."

This verification tool is available for use in [12].

V. CONCLUSIONS
The present study verifies the integrity of actual

repositories against RepoJacking, a malicious attack executed
by exploiting Github's redirection policy. This malicious
action is known to evolve into a supply chain attack. This
study also proposes two methods for protecting against
RepoJacking, along with a simple tool designed to assess the
integrity of repositories against RepoJacking. RepoJacking
can potentially escalate into a supply chain attack, leading to
the execution of the code intended by the attacker across
multiple PCs or servers. Thus, it could pose a significant threat
to cybersecurity. The proactive protection measures against
RepoJacking proposed in this paper are expected to mitigate
potential threats associated with RepoJacking.

ACKNOWLEDGMENT
This work was supported by the Korea Institute of Energy

Technology Evaluation and Planning (KETEP) and the
Ministry of Trade, Industry & Energy (MOTIE) of the
Republic of Korea (No. 20212020800120).

REFERENCES

[1] "GitHub." GitHub. Accessed July 6, 2023. https://github.com/.
[2] "About." GitHub. Accessed July 4, 2023. https://github.com/about.
[3] "TTA 정보통신용어사전." TTA, Accessed July 31, 2023.

https://terms.tta.or.kr/dictionary/dictionaryView.do?subject=%ED%9
5%98%EC%9D%B4%EC%9E%AC%ED%82%B9

[4] "Git." Git, Accessed July 6, 2023. https://git-scm.com/
[5] Gousios, Georgios. "The GHTorrent dataset and tool suite." . In

Proceedings of the 10th Working Conference on Mining Software
Repositories (pp. 233–236). IEEE Press, 2013.

[6] "RepoJacking: Exploiting the Dependency Supply Chain." Security
Innovation. Accessed July 21, 2023.
https://blog.securityinnovation.com/repo-jacking-exploiting-the-
dependency-supply-chain

[7] "GitHub Dataset Research Reveals Millions Potentially Vulnerable to
RepoJacking." Aquasec. Accessed July 6, 2023.
https://blog.aquasec.com/github-dataset-research-reveals-millions-
potentially-vulnerable-to-repojacking

[8] "GitHub RepoJacking Weakness Exploited in the Wild by Attackers."
Checkmarx. Accessed July 6, 2023.
https://checkmarx.com/blog/github-repojacking-weakness-exploited-
in-the-wild-by-attackers/

[9] Cordey, S. (2023). Software Supply Chain Attacks. An Illustrated
Typological Review (J. Bund, B. Scharte, S. Soesanto, & T. Grossman,
Eds.). doi:10.3929/ethz-b-000584947

[10] "GitHub repojacking attack: 10 lessons for software teams." Reversing
Labs. Accessed July 21, 2023.
https://www.reversinglabs.com/blog/github-repojacking-10-lessons-
for-software-teams

[11] "GitHub patches bug that could allow access to another user's repo."
Portswigger. Accessed July 6, 2023. https://portswigger.net/daily-
swig/github-patches-bug-that-could-allow-access-to-another-users-
repo.

[12] “repojacking_check.” GitHub. Accessed July 13, 2023.
https://github.com/p3ngdump/repojacking_check

1884

