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Abstract—Imitation learning is emerging as one promising
approach for robots to acquire skills. Since imitation learning
provides a way to learn policies by imitating the behavior
of experts, it requires a sufficient amount of sophisticated
expert behavior trajectories. However, current interfaces, such
as kinesthetic teaching or remote manipulation, have significant
limitations in efficiently collecting diverse demonstration data. To
address this issue, this work proposes an alternative interface for
imitation that simplifies the demonstration acquisition process
using a hand tracking solution while facilitating the transfer
of human actions to the robot. Performance results show that
the proposed system is effective for imitative learning, not only
imitating expert demonstrations with low latency, but also helping
to collect elaborate demonstration data.

Index Terms—Teleoperation, Mimetic interfaces, Motion track-
ing, Imitation learning

I. INTRODUCTION

Imitation learning is a form of supervised learning, a
machine learning technique in which an agent derives a policy
for performing a task by imitating the actions and decisions of
an expert. The goal of imitation learning is to derive a map of
policies or sequences of actions based on the state of the expert
that a skilled expert would take to successfully complete a task
[1]. This characteristic of imitation learning has a number of
advantages over other types of machine learning [2]. First, it
can reduce the time and effort required to derive a policy for
a specific task. Second, it can learn from the behavior of an
expert that cannot be captured by rewards alone. Third, by
leveraging the expertise of human demonstrators, agents can
perform tasks more efficiently and effectively.

A major bottleneck in current imitation learning is the use
of interfaces such as kinesthetic training or teleoperation to
acquire expert demonstrations [3]. Kinesthetic teaching, in
which an expert physically guides the robot by applying force,
is an effective way to enable non-experts to configure and
manipulate robots for demo collection [4], [5]. However, this
method is somewhat cumbersome and requires manipulating
each action one by one, so it is not suitable for complex ma-
nipulation tasks [6]. Teleoperation, in which an expert operates
a system or machine from a distance using a control interface,
has been successfully applied to a variety of robotic tasks
such as robot navigation [7], object grasping [8], car driving
[9], and even humanoid robots [10]. However, devising such

Fig. 1. The workflows of the proposed system.

interfaces for robot manipulation remains a challenge. Another
alternative is to use motion capture solutions that can record
the movements of objects or people. However, the recording
process often requires customized equipment and software,
which is costly and time-consuming [11]. Consequently, these
interface issues represent a serious bottleneck for most robotics
applications, especially in deep learning environments, which
typically require long training periods and large amounts of
empirical data. To address these issues, this study proposes a
novel interface utilizing a real-time hand tracking solution. The
proposed system simply captures and processes an expert’s
hand movements and then reproduces the movements by a
corresponding robotic manipulator. Performance results show
that the proposed system is effective in imitating expert
demonstrations with low latency and acquiring sophisticated
demonstration data.

II. THE PROPOSED DEMO COLLECTION SYSTEM

Figure 1 shows the workflows of the proposed system,
which tracks, collects, and transforms task demonstration data
to learn how an expert handles a task, has an agent reproduce
it to obtain demonstration data for training, and performs imi-
tation learning based on that data. In the figure, the master unit
demonstrates the behavior of handling a task as an expert with
the ability to handle manipulation or manufacturing tasks. The
motion tracker tracks specific keypoints and extracts location
and orientation information for the keypoints while the master
demonstrates their behavior. The data coordinator handles the
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Fig. 2. Configuration overview of the proposed system.

retargeting process, which converts the information collected
by the motion tracker into a form suitable for controlling the
slave unit so that it can act in a way that mimics the behavior
of the master unit. The slave unit is an agent, such as a robot or
robotic manipulator, that replicates the behavior of the master
unit using data processed by the data coordinator. The status
and behavior information of the slave unit is stored in the data
collector. The learning engine takes the stored demonstration
data as input and learns policies that mimic the master unit’s
behavioral policy.

Figure 2 depicts the configuration and operating environ-
ment of the proposed system. The proposed system is simple to
use. The demonstrator simply wears a motion tracker such as
a head-mounted display (HMD) with passthrough capabilities,
and manipulates with their hands in a virtual workspace
visualized through the HMD. The motion tracker basically
utilizes passthrough augmented reality (AR) and 3D hand
tracking solutions as human-robot interface. Passthrough AR
[12] is a technology that uses stereo cameras and a standard
virtual reality display to display the real-world environment
around the user. The motion tracker captures images of the
virtual workspace through attached cameras and analyzes them
in real-time to track the spatial coordinates and orientation
of the demonstrator’s hand keypoints, such as fingertips and
finger joint, as well as hand gestures. The proposed system
converts keypoint coordinates of the tracked hand into joint
position parameters using an inverse kinematic solver [13].
The server delivers the converted data to the agent, and the
agent reproduces the same behavior as the user based on the
behavior control data received.

Figure 3 shows the layout of user view that is visualized
to the user when demonstrating task processing. During a
demonstration of an action, if the user demonstrates the
action in a blank space without any additional information,
the behavior may be unnatural or inaccurate. To compensate,
a real agent that mimics the user’s behavior performs the
action demonstration, and the user can see the action in real
time. The information visualized to the user is a kind of
mixed reality content that includes a 3D image of the virtual

Fig. 3. Layout of user view.

Fig. 4. Participant performing robot manipulation.

workspace, state information from the agent, and real-time
images from the motion tracker’s camera and the user’s hand.
For example, if the user’s hand makes a shifting or grasping
gesture, the agent will quickly do the same. These visualization
applications can be used to increase the intuitiveness and
accuracy of object manipulation when demonstrating tasks to
users.

III. IMPLEMENTATION AND PERFORMANCE

The implemented system works as follows. The demonstra-
tor wears a motion tracker such as a HMD with passthrough
capabilities. Then, the attached camera collects images of the
workspace and the demonstrator’s hand tracking information
and sends them to the server. Based on the acquired informa-
tion, the server generates movement control commands that
cause the slave unit to mimic the demonstrator’s movements.
These commands are delivered to the agent in real time and
the agent operates in the physical workspace and can push,
pull, grab, and move target objects on the workbench.

During these task demonstrations, the agent’s behavioral
data (e.g., tip position of the robot hand, angles, angular
velocities, spatial coordinates, orientation, rotation, etc.) and
observation data (e.g., angles, angular velocities, spatial co-
ordinates, orientation, rotation, etc.) are stored on the server.
These system features were implemented in Unity 3D, and
a 6-DoF robotic manipulator with a two-finger gripper was
used for the mimic agent. The proposed system is capable of
controlling joint angles up to 500 times per second.

Figure 4 shows a participant demonstration of the imple-
mented system. Demonstration videos of the proposed system
are available at https://sites.google.com/view/ictc2023choi.
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Fig. 5. User view of the implemented system.

Fig. 6. Workflows of the proposed method.

Unrestricted mimicking of user behavior can cause safety
issues. Therefore, to ensure safety, the implemented system
utilizes hand gesture recognition to synchronize the slave agent
when the user performs a certain hand gesture. Specifically,
the implemented system required that the user’s hand be fully
extended and that the hand and the real robot’s gripper overlap
for a period of time to synchronize, as shown in Figure 5.

Since the demonstrator is performing the demonstration
while being aware of the slave agent’s movements, the demon-
strator is sensitive to motion delays. The implementation sys-
tem is driven by a variety of processing, including perception,
tracking, transformation, networking, and device control, and
these complex processes will have a significant impact on
the delay between the demonstrator’s behavior and the slave
agent’s behavioral imitation. The end-to-end behavioral delay
of the system was estimated from the demonstration video.
Specifically, we took a 30fps video of the system running
and measured motion latency as the difference between the
frame where the human starts to move and the frame where the
robot actually moves. In a wired local network environment,
as shown in Figure 6, the robot was found to move after
an average of 7 or 8 frames, which translates to a delay of
about 233 to 267 ms. It is known that humans are generally
uncomfortable with delays of more than one second [14].
Consequently, the proposed system can be utilized not only
as a demo collector for imitation learning, but also as a
manipulative task execution avatar operating in a remotely
accessible place.

IV. CONCLUSION

This work proposed an alternative demo collection in-
terface for imitation. Performance results showed that the
proposed system not only mimics expert demonstrations with
low latency, but is also effective in collecting sophisticated
demonstration data. The presented work has the advantage of
being able to easily transfer human motions to robots and
to learn a wider range of behavioral policies more flexibly,
but has the disadvantage of requiring a HMD with motion
tracking and passthrough capabilities. Potential extension of
the presented work is to extend it to a humanoid robot and
apply it to a real-world settings with noisy trajectories.

ACKNOWLEDGMENT

This work was supported by Electronics and Telecom-
munications Research Institute (ETRI) grant funded by the
Korean government. [23ZR1100, A Study of Hyper-Connected
Thinking Internet Technology by autonomous connecting,
controlling and evolving ways]

REFERENCES

[1] T. Osa, et al., “An Algorithmic Perspective on Imitation Learning,” arXiv
preprint, abs/1811.06711, 2018.

[2] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc of ICML, 2004.

[3] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel and L. Pinto,
Visual imitation made easy, in Proc. of Conference on Robot Learning
(CoRL), 2020.

[4] M. M. Coad, L. H. Blumenschein, S. Cutler et al., Vine robots: design,
teleoperation, and deployment for navigation and exploration, IEEE
Robotics and Automation Magazine, 2019.

[5] J. D. Sweeney and R. Grupen, A model of shared grasp affordances
from demonstration, in Proc. of IEEE-RAS International Conference on
Humanoid Robots, pp. 27–35, 2007.

[6] A. Santara, A. Naik, B. Ravindran, D. Dipankar, D. Mudigere, S
Avancha and B. Kaul, RAIL: Risk-Averse Imitation Learning, in Proc.
of NIPS, 2017.

[7] C. Mutzenich, S. Durant, S. Helman, and P. Dalton, Updating our
understanding of situation awareness in relation to remote operators of
autonomous vehicles, Cognitive Research: Principles and Implications,
vol.6, no.1, pp.9, 2021.

[8] L. Penco, N. Scianca, V. Modugno, L. Lanari, G. Oriolo and S. Ivaldi,
A multimode teleoperation framework for humanoid loco-manipulation:
An application for the icub robot, IEEE Robot. Autom. Mag., vol.26,
no.4, pp.73-82, 2019.

[9] S. Wrede, C. Emmerich, R. Grunberg, A. Nordmann, A. Swadzba and
J. Steil, A user study on kinesthetic teaching of redundant robots in task
and configuration space, Journal of Human-Robot Interaction, vol.2,
no.1, pp.56–81, 2013.

[10] I. Lenz, R. Knepper and A. Saxena, Deepmpc: Learning deep latent
features for model predictive control, In Robotics: Science and Systems,
2015.

[11] S. Sharma, S. Verma, M. Kumar, and L. Sharma, Use of motion capture
in 3D animation: Motion capture systems, challenges, and recent trends,
in Proc. of IEEE COMITCon, pp. 289–294, 2019.

[12] G. Chaurasia et al., Passthrough+: Real-time Stereoscopic View Synthe-
sis for Mobile Mixed Reality, in Proc. of ACM Comput. Graph. Interact.
Tech., vol.3, no.1, article 7, 2020.

[13] Universal Robots RTDE C++ Interface, Available at:
https://sdurobotics.gitlab.io/ur rtde/

[14] S. Ellis, K. Mania, B. Adelstein and M. Hill, Generalizeability of latency
detection in a variety of virtual environments, in Proc. of the Human
Factors and Ergonomics Society Annual Meeting, vol.48, 2004, pp.
2632–2636.

1834


